Transmissions require a good shift feeling and improved fuel efficiency. In state-of-the-art stepped automated transmissions, the number of gear stages increases, and the lock-up area is expanded to improve fuel efficiency. However, this makes it difficult to obtain a good shift feeling and it takes a large number of calibration man-hours. Therefore, to reduce the number of calibration man-hours and improve the shift feeling, we propose a slip control law between the engine and the clutch, which is composed of a proportional-integral-derivative (PID) controller and a disturbance observer. Moreover, PID gain is adjusted online by installing an automatic tuning method, which does not require a controlled object model. The effects of the proposed method are verified via an experiment using an actual vehicle. The experimental results show that the proposed method is effective for automatically adjusting PID gain and improving the shift feeling of the stepped automated transmission.
A master-slave control system for a semi-autonomous underwater vehicle-manipulator system hand. The effectiveness of the proposed master-slave control system is demonstrated by using a fl oating underwater robot with a 2-link manipulator.2 Confi guration of the master-slave control system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.