Uromodulin, the most abundant protein in normal urine, is essentially produced by the cells lining the thick ascending limb. There it regulates the activity of the cotransporter NKCC2 and is involved in sodium chloride handling and blood pressure regulation. Conflicting reports suggested that uromodulin may also be expressed in the distal convoluted tubule (DCT) where its role remains unknown. Using microdissection studies combined with fluorescent in situ hybridization and co-immunostaining analyses, we found a significant expression of uromodulin in mouse and human DCT at approximately 10% of thick ascending limb expression levels, but restricted to the early part of the DCT (DCT1). Genetic deletion of Umod in mouse was reflected by a major shift in NCC activity from the DCT1 to the downstream DCT2 segment, paralleled by a compensatory expansion of DCT2. By increasing the distal sodium chloride and calcium ion load with chronic furosemide administration, an intrinsic compensatory defect in the DCT from Umod compared to wild type mice was found manifested as sodium wasting and hypercalciuria. In line, co-expression studies in HEK cells suggested a facilitating role for uromodulin in NCC phosphorylation, possibly via SPAK-OSR1 modulation. These experiments demonstrate a significant expression of uromodulin in the early part of mouse and human DCT. Thus, biosynthesis of uromodulin in the DCT1 is critical for its function, structure and plasticity, suggesting novel links between uromodulin, blood pressure control and risk of kidney stones.
Uromodulin is a zona pellucida-type protein essentially produced in the thick ascending limb (TAL) of the mammalian kidney. It is the most abundant protein in normal urine. Defective uromodulin processing is associated with various kidney disorders. The luminal release and subsequent polymerization of uromodulin depend on its cleavage mediated by the serine protease hepsin. The biological relevance of a proper cleavage of uromodulin remains unknown. Here we combined in vivo testing on hepsin-deficient mice, ex vivo analyses on isolated tubules and in vitro studies on TAL cells to demonstrate that hepsin influence on uromodulin processing is an important modulator of salt transport via the sodium cotransporter NKCC2 in the TAL. At baseline, hepsin-deficient mice accumulate uromodulin, along with hyperactivated NKCC2, resulting in a positive sodium balance and a better adaptation to water deprivation. In conditions of high salt intake, defective uromodulin processing predisposes hepsin-deficient mice to a salt-wasting phenotype, with a decreased salt sensitivity. These modifications are associated with intracellular accumulation of uromodulin, endoplasmic reticulum-stress and signs of tubular damage. These studies expand the physiological role of hepsin and uromodulin and highlight the importance of hepsin-mediated processing of uromodulin for kidney tubule homeostasis and salt sensitivity.
Background: Chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH) are major health burdens closely related to metabolic syndrome. A link between CKD and NASH has been assumed; however, the underlying mechanism is still unknown. Ectopic lipid deposition (ELD) in the hepatocyte results in endoplasmic reticulum (ER) stress, which plays an important role in the development of steatohepatitis. ELD is also assumed to play a role in the development of kidney injury. We aimed to investigate the role of ELD and ER stress in the development of CKD, and evaluate the efficacy of a sodium glucose cotransporter-2 inhibitor, ipragliflozin. Methods: Male FLS-ob/ob mice that closely imitate the pathophysiology of NASH were treated with vehicle or ipragliflozin. Metabolic characteristics, histology of the kidney, ER stress, and apoptotic signals were evaluated. Results: The serum triglyceride was significantly lower in mice treated with ipragliflozin. Ipragliflozin reduced ELD in renal tubules. Ipragliflozin also reduced the expression levels of GRP78 and CHOP, apoptotic cells, and interstitial fibrosis. Conclusions: ELD induced kidney injury through ER stress. Ipragliflozin improved the pathogenesis of CKD by reducing ELD and ER stress in NASH-model mice. Our results suggest ipragliflozin has therapeutic effect on CKD in NASH.
Aims: The kidney becomes atrophic in advanced chronic kidney disease, and renal size and parenchymal volume correlate with renal function. However, alterations in renal parenchymal volume have not been adequately studied in terms of the renal cortex and medulla. We investigated the relationship between the changes in the renal cortex and medulla and renal function. Methods: Renal ultrasound (US) parameters including renal length, parenchymal thickness, cortical thickness and medullary thickness were assessed in 176 subjects, who were categorized into 4 groups based on the estimated glomerular filtration rate (ml/min/1.73 m2): group 1, ≥90; group 2, ≥60 but <90; group 3, ≥30 but <60; and group 4, <30. Renal US parameters in both kidneys were compared among the 4 groups. Results: We found stepwise associations in renal length, cortical thickness and parenchymal thickness with decreased renal function. Medullary thickness showed no changes among groups 1-3. Multiple linear regression analysis including sex, age and renal US parameters showed that only renal length was an independent predictor of renal function. When analyzed in groups 1-3, cortical thickness was the strongest associated parameter. Lower cortical left/right ratio (left cortical thickness/right cortical thickness) showed a stepwise association with a decrease in renal function. Conclusion: Renal length and cortical thickness measured by US were correlated with renal function. In particular, left cortical thickness could help to detect early changes in renal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.