Although neurotrophins have been assessed as candidate therapeutic agents for neural complications of diabetes, their involvement in diabetic retinopathy has not been fully characterized. We found that the protein and mRNA levels of brain-derived neurotrophic factor (BDNF) in streptozotocin-induced diabetic rat retinas were reduced to 49% (P < 0.005) and 74% (P < 0.05), respectively, of those of normal control animals. In addition, dopaminergic amacrine cells appeared to be degenerating in the diabetic rat retinas, as revealed by tyrosine hydroxylase (TH) immunoreactivity. Overall TH protein levels in the retina were decreased to onehalf that of controls (P < 0.01), reflecting reductions in the density of dopaminergic amacrine cells and the intensity of TH immunoreactivity within them. To confirm the neuropathological implications of BDNF reduction, we administered BDNF protein into the vitreous cavities of diabetic rats. Intraocular administration of BDNF rescued dopaminergic amacrine cells from neurodegeneration and counteracted the downregulation of TH expression, demonstrating its therapeutic potential. These findings suggest that the early retinal neuropathy of diabetes involves the reduced expression of BDNF and can be ameliorated by an exogenous supply of this neurotrophin.
Occult macular dystrophy (OMD) is an inherited macular dystrophy characterized by progressive loss of macular function but normal ophthalmoscopic appearance. Typical OMD is characterized by a central cone dysfunction leading to a loss of vision despite normal ophthalmoscopic appearance, normal fluorescein angiography, and normal full-field electroretinogram (ERGs), but the amplitudes of the focal macular ERGs and multifocal ERGs are significantly reduced at the central retina. Linkage analysis of two OMD families was performed by the SNP High Throughput Linkage analysis system (SNP HiTLink), localizing the disease locus to chromosome 8p22-p23. Among the 128 genes in the linkage region, 22 genes were expressed in the retina, and four candidate genes were selected. No mutations were found in the first three candidate genes, methionine sulfoxide reductase A (MSRA), GATA binding 4 (GATA4), and pericentriolar material 1 (PCM1). However, amino acid substitution of p.Arg45Trp in retinitis pigmentosa 1-like 1 (RP1L1) was found in three OMD families and p.Trp960Arg in a remaining OMD family. These two mutations were detected in all affected individuals but in none of the 876 controls. Immunohistochemistry of RP1L1 in the retina section of cynomolgus monkey revealed expression in the rod and cone photoreceptor, supporting a role of RP1L1 in the photoreceptors that, when disrupted by mutation, leads to OMD. Identification of RP1L1 mutations as causative for OMD has potentially broader implications for understanding the differential cone photoreceptor functions in the fovea and the peripheral retina.
BackgroundHereditary short stature syndromes are clinically and genetically heterogeneous disorders and the cause have not been fully identified. Yakuts are a population isolated in Asia; they live in the far east of the Russian Federation and have a high prevalence of hereditary short stature syndrome including 3-M syndrome. A novel short stature syndrome in Yakuts is reported here, which is characterised by autosomal recessive inheritance, severe postnatal growth retardation, facial dysmorphism with senile face, small hands and feet, normal intelligence, Pelger-Huët anomaly of leucocytes, and optic atrophy with loss of visual acuity and colour vision. This new syndrome is designated as short stature with optic atrophy and Pelger-Huët anomaly (SOPH) syndrome.AimsTo identify a causative gene for SOPH syndrome.MethodsGenomewide homozygosity mapping was conducted in 33 patients in 30 families.ResultsThe disease locus was mapped to the 1.1 Mb region on chromosome 2p24.3, including the neuroblastoma amplified sequence (NBAS) gene. Subsequently, 33 of 34 patients were identified with SOPH syndrome and had a 5741G/A nucleotide substitution (resulting in the amino acid substitution R1914H) in the NBAS gene in the homozygous state. None of the 203 normal Yakuts individuals had this substitution in the homozygous state. Immunohistochemical analysis revealed that the NBAS protein is well expressed in retinal ganglion cells, epidermal skin cells, and leucocyte cytoplasm in controls as well as a patient with SOPH syndrome.ConclusionThese findings suggest that function of NBAS may associate with the pathogenesis of short stature syndrome as well as optic atrophy and Pelger-Huët anomaly.
Estimates of the relative numbers of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cones vary considerably among normal trichromats and depend significantly on the nature of the experimental method employed. Here we estimate L/M cone ratios in a population of normal observers, using three psychophysical tasks-detection thresholds for cone-isolating stimuli at different temporal frequencies, heterochromatic flicker photometry, and cone contrast ratios at minimal flicker perception--as well as flicker electroretinography and retinal densitometry. The psychophysical tasks involving high temporal frequencies, specifically designed to tap into the luminance channel, provide average L/M cone ratios that significantly differ from unity with large interindividual variation. In contrast, the psychophysical tasks involving low temporal frequencies, chosen to tap into the red-green chromatic channel, provide L/M cone ratios that are always close to unity. L/M cone ratios determined from electroretinographic recordings or from retinal densitometry correlate with those determined from the high-temporal-frequency tasks. These findings suggest that the sensitivity of the luminance channel is directly related to the relative densities of the L and the M cones and that the red-green chromatic channel introduces a gain adjustment to compensate for differences in L and M cone signal strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.