In recent years, the environment surrounding companies has become more challenging. It has become more difficult for many companies in the manufacturing industry to possess all the skills they need, such as production, warehousing, and retailing, so they need to outsource certain skills. In supply chains with several companies, each has an optimal strategy. Specifically, supply chains where the solution is decided through negotiations with their partners are defined as “decentralized supply chains.” In such situations, collaborative relationships are important. One possible approach is replenishment contracts between vendors and buyers under the condition that demand for each buyer is constant. In a buyer-dominated supply chain, because the vendor cannot choose solutions that lower the satisfaction of buyers, it is difficult to change the replenishment intervals. The common replenishment epochs (CRE) strategy is one of the methods used to address this issue. The vendor integrates the buyers’ replenishment timings using CRE and provides a price discount on the products to compensate for the increase in the cost to the buyers. The price discount rate is calculated based on the worst reduction rate in the costs incurred by the buyers based on the economic order quantity (EOQ) model. The optimal CRE and discount rate are decided such that the cost incurred by vendor is minimized. The increased emphasis on the worst reduction rates can potentially lead to biases in buyer satisfaction, and the price discount rate is overestimated. Then, the cost of the vendor increases. Hence, through the negotiations with less satisfied buyers, the vendor changes the CRE so that their satisfaction is improved and the price discount is lower. As a result, the vendor can reduce its cost. This study develops a model to find an improved solution after the negotiations. If satisfaction of multiple players is regarded as multi-objective, a solution of multi-player decision-making is obtained using multi-objective optimization. Linear physical programming (LPP) has been applied as a form of multi-objective optimization, and it is possible to determine the weight coefficients using the preference ranges of the objective functions. In addition, by considering the buyers’ preference levels, the constraints of the discount rates are relaxed and the vendor’s cost can be reduced. Therefore, this study develops a model based on the CRE strategy using LPP.
In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.