Martensitic stainless steel type AISI420 was plasma nitrided at 673 K for 3.6 ks to investigate the initial stage of the nitrogen supersaturation process without the formation of iron and chromium nitrides. SEM-EDX, electron back-scattering diffraction (EBSD), and TEM analyses were utilized to characterize the microstructure of the nitrided layer across the nitriding front end. The original coarse-grained, fully martensitic microstructure turned to be α’- γ two phase and fine-grained by high nitrogen concentration. Below this homogeneously nitrided layer, α’-grains were modified in geometry to be aligned along the plastic slip lines together with the α’ to γ-phase transformation at these highly strained zones. Most of these α’-grains in the two-phase microstructure had a nano-laminated structure with the width of 50 nm.
A bare AISI420J2 punch often suffers from severe adhesion of metallic titanium as well as titanium oxide debris particles in dry, cold forging of biomedical titanium alloys. This punch was plasma-carburized at 673 K for 14.4 ks to harden it up to 1200 HV on average and to achieve carbon supersaturation in the carburized layer. This plasma-carburized punch was employed in the cold, dry forging of a pure titanium wire into a flat plate while reducing the thickness by 70%. The contact interface width approached the forged workpiece width with increasing the reduction ratio. This smaller bulging deformation reveals that the workpiece is upset by homogeneous plastic flow with a lower friction coefficient. This low-friction and anti-galling forging process was sustained by an in situ solid lubrication mechanism. Unbound free carbon was isolated from the carbon-supersaturated AISI420J2 matrix and deposited as a thin tribofilm to protect the contact interface from mass transfer of metallic titanium.
A thick β-SiC CVD (chemical vapor deposition)-coated SiC device was developed as a new punch and die system for dry, cold forging of pure titanium and austenitic stainless-steel works. This β-SiC coating thickness was 4 mm, enough to make mechanical machining of a cavity into β-SiC coating core die. These β-SiC-coated punch and core dies were fixed into the cassette die for dry, cold forging experiments. The stainless steel and titanium wires with diameters of 1.0 mm were employed as the work material. Different from the conventional metallic and ceramic die systems suffering from work material transfer, this system sustained the galling-free cold, dry forging behavior up to a higher reduction of thickness than 30%. The power to stroke the relationship was in situ monitored to describe this forging behavior up to the specified reduction of the wires together with observations on the geometric change from a circular wire to a pentagonal prism bar. Precise scanning electron microscopy-electron-dispersive X-ray spectroscopy (SEM-EDX) analyses were performed to describe the material compatibility on the contact interface between β-SiC coating and elastoplastically deforming works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.