The transfer of ferroelectric and piezoelectric BaTiO3 epitaxial thin films from an original MgO(100) single-crystal substrate to a polyethylene terephthalate (PET) sheet has been studied to fabricate flexible epitaxial functional oxides. The outline of our previous transfer process is as follows: the epitaxial BaTiO3 thin films were deposited on the MgO(100). Then, the surface of the BaTiO3 was adhered onto a PET sheet. Finally, only the MgO(100) substrate was dissolved in a phosphoric aqueous solution, which resulted in the transfer of the epitaxial BaTiO3 thin film from the MgO(100) to a PET sheet. To establish this transfer process, our aim was to prevent any damage, such as cracks and exfoliation, during the transfer of the epitaxial functional oxides. We found that a Pt buffer layer with a ductile nature was effective for improving the quality of transferred epitaxial BaTiO3 thin films. Moreover, the epitaxial BaTiO3 thin films showed a drastic shrinkage of ca. 10%. The surfaces of the shrunk, epitaxial BaTiO3 thin films showed giant wrinkles with a micrometer-order amplitude and a 10-μm-order periodicity without any damage. The epitaxial BaTiO3 thin films with giant wrinkles, accompanied by drastic shrinkage, are similar to the thin films that are coated on a pre-stretched elastomer, which is one of the fabrication processes of stretchable devices.
Epitaxial thin films of a ferroelectric perovskite‐type oxide grown on single‐crystalline SrTiO3 (100) were transferred onto a flexible printed circuit (FPC). In the case that the thin films were directly adhered onto FPC using a copper foil double‐coated conductive adhesive tape (Cu double‐sided tape), serious cracking and exfoliation occurred during the transfer process. To avoid these damages, we have tried to insert a metal buffer layer with excellent ductility between the ferroelectric oxide thin film and the Cu double‐sided tape. The platinum buffer layer was found to be appropriate to establish a crack‐ and exfoliation‐free transfer process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.