SUMMARY
To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ~0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSCCMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm.
These results indicate that our torsadogenic risk assessment is reliable and has a potential to replace the hERG assay for torsadogenic risk prediction, however, this system needs to be improved for the accurate of prediction of clinical TdP risk. Here, we propose a novel drug induced torsadogenic risk categorising system using hiPSC-CMs and the MEA system.
FP can be used to assess the QT prolongation and proarrhythmic potential of drug candidates; however, experimental conditions such as HPF frequency are important for obtaining reliable data.
A mouse mutation, termed goku, was generated by a gene-trap strategy. goku homozygous mice showed dwarfism, a marked increase in anxiety, and an analgesic effect. Molecular analysis indicated that the mutated gene encodes a puromycin-sensitive aminopeptidase (Psa; EC 3. 4.11.14), whose functions in vivo are unknown. Transcriptional arrest of the Psa gene and a drastic decrease of aminopeptidase activity indicated that the function of Psa is disrupted in homozygous mice. Together with the finding that the Psa gene is strongly expressed in the brain, especially in the striatum and hippocampus, these results suggest that the Psa gene is required for normal growth and the behavior associated with anxiety and pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.