A method for the diastereoselective synthesis of 6″-(Z)- and 6″-(E)-fluorinated analogues of the anti-HBV agent entecavir has been developed. Construction of the methylenecyclopentane skeleton of the target molecules has been accomplished by radical-mediated 5-exo-dig cyclization of the selenides 6 and 15 having the phenylsulfanylethynyl structure as a radical accepting moiety. In the radical reaction of the TBS-protected precursor 6, (Z)-anti-12 was formed as a major product. On the other hand, TIPS-protected 15 gave (E)-anti-12. The sulfur-extrusive stannylation of anti-12 furnished a mixture of geometric isomers of the respective vinylstannane, whereas benzoyl-protected 17 underwent the stannylation in the manner of retention of configuration. Following XeF2-mediated fluorination, introduction of the purine base and deoxygenation of the resulting carbocyclic guanosine gave the target (E)- and (Z)-3 after deprotection. Evaluation of the anti-HBV activity of 3 revealed that fluorine-substitution at the 6″-position of entecavir gave rise to a reduction in the cytotoxicity in HepG2 cells with retention of the antiviral activity.
4-exo-trig Cyclization reaction of a 4-pentenyl carbon radical containing the gem-difluoromethylene moiety adjacent to a radical accepting a,b-unsaturated ester was found to proceed efficiently to furnish a novel gem-difluorocyclobutane derivative. The cyclized product could be transformed into a gem-difluoromethylene analogue of oxetanocin T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.