By extending the notion of minimum rank distance, this paper introduces two new relative code parameters of a linear code C 1 of length n over a field extension F q m and its subcode C 2 C 1 . One is called the relative dimension/intersection profile (RDIP), and the other is called the relative generalized rank weight (RGRW). We clarify their basic properties and the relation between the RGRW and the minimum rank distance. As applications of the RDIP and the RGRW, the security performance and the error correction capability of secure network coding, guaranteed independently of the underlying network code, are analyzed and clarified. We propose a construction of secure network coding scheme, and analyze its security performance and error correction capability as an example of applications of the RDIP and the RGRW. Silva and Kschischang showed the existence of a secure network coding in which no part of the secret message is revealed to the adversary even if any dim C 1 −1 links are wiretapped, which is guaranteed over any underlying network code. However, the explicit construction of such a scheme remained an open problem. Our new construction is just one instance of secure network coding that solves this open problem.Index Terms-Network error correction, rank distance, relative dimension/intersection profile, relative generalized Hamming weight, relative generalized rank weight, secure network coding.
We construct a practically implementable classical processing for the BB84
protocol and the six-state protocol that fully utilizes the accurate channel
estimation method, which is also known as the quantum tomography. Our proposed
processing yields at least as high key rate as the standard processing by Shor
and Preskill. We show two examples of quantum channels over which the key rate
of our proposed processing is strictly higher than the standard processing. In
the second example, the BB84 protocol with our proposed processing yields a
positive key rate even though the so-called error rate is higher than the 25%
limit.Comment: 13 pages, 1 figure, REVTeX4. To be published in PRA. Version 2 adds
many references, a closed form key rate formula for unital channels, and a
procedure for the maximum likelihood channel estimatio
We propose an information reconciliation protocol that uses two-way classical communication. The key rates of quantum key distribution ͑QKD͒ protocols that use our protocol are higher than those using previously known protocols for a wide range of error rates for the Bennett-Brassard 1984 and six-state protocols. We also clarify the relation between the proposed and known QKD protocols, and the relation between the proposed protocol and entanglement distillation protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.