We study rational Lagrangian immersions in a cotangent bundle, based on the microlocal theory of sheaves. We construct a sheaf quantization of a rational Lagrangian immersion and investigate its properties in Tamarkin category. Using the sheaf quantization, we give an explicit bound for the displacement energy and a Betti/cup-length estimate for the number of the intersection points of the immersion and its Hamiltonian image by a purely sheaf-theoretic method.
We study rational Lagrangian immersions in a cotangent bundle, based on the microlocal theory of sheaves. We construct a sheaf quantization of a rational Lagrangian immersion and investigate its properties in Tamarkin category. Using the sheaf quantization, we give an explicit bound for the displacement energy and a Betti/cup-length estimate for the number of the intersection points of the immersion and its Hamiltonian image by a purely sheaf-theoretic method.Résumé. -Nous étudions les immersions lagrangiennes rationnelles dans un fibré cotangent en nous basant sur la théorie microlocale des faisceaux. Nous construisons une quantification faisceautique d'une immersion lagrangienne rationnelle et étudions ses propriétés dans la catégorie de Tamarkin. En utilisant la quantification faisceautique, nous donnons une limite explicite à l'énergie de déplacement et une estimation Betti ou cup-length pour le nombre de points d'intersection de l'immersion et de son image hamiltonienne par une méthode purement faisceautique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.