The monomer-aggregate equilibrium of four phenothiazine (PN) dyes, containing thionine (TH), methylene blue (MB), new methylene blue (NMB), and 1,9-dimethylmethylene blue (DMB), in the tungsten(VI) oxide (WO(3)) nanocolloid solution has been investigated by means of UV-vis spectroscopy. Addition of PN dye into the WO(3) nanocolloid solution brought about significant changes in the absorption spectrum, suggesting the formation of H-type (face-to-face fashion) trimer on the WO(3) nanocolloid surface. The adsorptivity of PN dyes onto the WO(3) nanocolloid surface was diminished by the raising the ionic strength, indicating the evidence of the electrostatic interaction between cationic PN dye and negatively charged WO(3) nanocolloids. The detail analysis of each spectral data provided insight into the effect of molecular structure of PN dyes on the adsorption and aggregation behaviors on the WO(3) nanocolloid surface. Moreover, in situ measurement of PN dye aggregation using the centrifugal liquid membrane (CLM) technique revealed that the aggregation of PN dyes on the WO(3) nanocolloid surface proceeded in a two-step three-stage (monomer --> dimer --> trimer) formation. The aggregation mechanism of PN dyes on the WO(3) nanocolloid surface was discussed on the basis of Kasha's exciton theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.