Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260 nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface. It has a 381-kb genome encoding 461 putative proteins, 86 of which have their closest homologs in Acanthamoeba, whereas 279 (61%) are orphan genes. The virus lacks the genes encoding DNA topoisomerase II and RNA polymerase, showing that DNA replication takes place in the host nucleus, whereas the progeny virions are assembled in the cytoplasm. Furthermore, the medusavirus genome harbored genes for all five types of histones (H1, H2A, H2B, H3, and H4) and one DNA polymerase, which are phylogenetically placed at the root of the eukaryotic clades. In contrast, the host amoeba encoded many medusavirus homologs, including the major capsid protein. These facts strongly suggested that amoebae are indeed the most promising natural hosts of medusavirus, and that lateral gene transfers have taken place repeatedly and bidirectionally between the virus and its host since the early stage of their coevolution. Medusavirus reflects the traces of direct evolutionary interactions between the virus and eukaryotic hosts, which may be caused by sharing the DNA replication compartment and by evolutionarily long lasting virus-host relationships. Based on its unique morphological characteristics and phylogenomic relationships with other known large DNA viruses, we propose that medusavirus represents a new family, Medusaviridae. IMPORTANCE We have isolated a new nucleocytoplasmic large DNA virus (NCLDV) from hot spring water in Japan, named medusavirus. This new NCLDV is phylogenetically placed at the root of the eukaryotic clades based on the phylogenies of several key genes, including that encoding DNA polymerase, and its genome surprisingly encodes the full set of histone homologs. Furthermore, its laboratory host, Acanthamoeba castellanii, encodes many medusavirus homologs in its genome, including the major capsid protein, suggesting that the amoeba is the genuine natural host from ancient times of this newly described virus and that lateral gene transfers have repeatedly occurred between the virus and amoeba. These results suggest that medusavirus is a unique NCLDV preserving ancient footprints of evolutionary interactions with its hosts, thus providing clues to elucidate the evolution of NCLDVs, eukaryotes, and virus-host interaction. Based on the dissimilarities with other known NCLDVs, we propose that medusavirus represents a new viral family, Medusaviridae.
Known viruses build their particles using a restricted number of redundant structural solutions. Here, we describe the Aeropyrum coil-shaped virus (ACV), of the hyperthermophilic archaeon Aeropyrum pernix, with a virion architecture not previously observed in the viral world. The nonenveloped, hollow, cylindrical virion is formed from a coiling fiber, which consists of two intertwining halves of a single circular nucleoprotein. The virus ACV is also exceptional for its genomic properties. It is the only virus with a single-stranded (ss) DNA genome among the known hyperthermophilic archaeal viruses. Moreover, the size of its circular genome, 24,893 nt, is double that of the largest known ssDNA genome, suggesting an efficient solution for keeping ssDNA intact at 90-95°C, the optimal temperature range of A. pernix growth. The genome content of ACV is in line with its unique morphology and confirms that ACV is not closely related to any known virus.Archaea | hyperthermophile | virion structure
We have surveyed the morphological diversity of viruses infecting the archaeon Aeropyrum pernix, the most thermophilic species among aerobic organisms, growing optimally at 90 degrees C, and isolated and characterized a novel virus, Aeropyrum pernix bacilliform virus 1, APBV1. This is the first virus to be described of the genus Aeropyrum and the archaeal order Desulfurococcales. The virion of APBV1 has rigid bacilliform morphology, about 140x20nm, with one end pointed and the other rounded. It contains highly glycosylated single major protein and three minor proteins. The circular, double-stranded DNA genome comprising 5278bp is the smallest for known archaeal viruses. None of the 14 putative genes, all on the same DNA strand, shows significant similarity to sequences in the public databases. The APBV1 infection caused neither retardation of host growth nor lysis of host cells, and integration of the viral genome into the host chromosome was not detected. On the basis of unusual morphological and genomic properties, we propose to consider APBV1 as the first representative of a new viral family, the Clavaviridae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.