An essential step in intricate visual processing is the segregation of visual signals into ON and OFF pathways by retinal bipolar cells (BCs). Glutamate released from photoreceptors modulates the photoresponse of ON BCs via metabotropic glutamate receptor 6 (mGluR6) and G protein (Go) that regulates a cation channel. However, the cation channel has not yet been unequivocally identified. Here, we report a mouse TRPM1 long form (TRPM1-L) as the cation channel. We found that TRPM1-L localization is developmentally restricted to the dendritic tips of ON BCs in colocalization with mGluR6. TRPM1 null mutant mice completely lose the photoresponse of ON BCs but not that of OFF BCs. In the TRPM1-L-expressing cells, TRPM1-L functions as a constitutively active nonselective cation channel and its activity is negatively regulated by Go in the mGluR6 cascade. These results demonstrate that TRPM1-L is a component of the ON BC transduction channel downstream of mGluR6 in ON BCs.egregation of visual signals into ON and OFF pathways originates in BCs, the second-order neurons in the retina (1, 2). ON and OFF BCs express metabotropic glutamate receptors, mGluR6, and ionotropic glutamate receptors (iGluRs), respectively, on their dendrites (3-5). Reduction of glutamate released from photoreceptors by light stimulation depolarizes ON BCs and hyperpolarizes OFF BCs (6-8) mediated through respective glutamate receptors. The mGluR6 couples to a heterotrimeric G protein complex, Go (9, 10). Signals require Goα, which ultimately closes a downstream nonselective cation channel in ON BCs (6, 9, 11-13). However, this transduction cation channel in ON BCs has not been identified, despite intensive investigation.In our screen to identify functionally important molecules in the retina, we found that TRPM1 is predominantly expressed in retinal BCs. Most members of the TRP superfamily, which are found in a variety of sense organs, are non-voltage-gated cation channels (14-16). The founding member of the TRP family was discovered as a key component of the light response in Drosophila photoreceptors (17). TRPM1, also known as melastatin, was the first member of the melanoma-related transient receptor potential (TRPM) subfamily to be discovered (18,19). TRPM1 is alternatively spliced, resulting in the production of a long form (TRPM1-L) and a short N-terminal form devoid of transmembrane segments (TRPM1-S) (18,20). Although mouse TRPM1-S was previously identified as melastatin, mouse TRPM1-L has not been identified (18). The distinct physiological and biological functions of TRPM1 still remain elusive, although some recent evidences including us suggested that TRPM1 might contribute to retinal BC function (21-23). Here, we show that TRPM1-L is the transduction cation channel of retinal ON BCs in the downstream of mGluR6 cascade.
Juvenile myoclonic epilepsy (JME) is the most frequent cause of hereditary grand mal seizures. We previously mapped and narrowed a region associated with JME on chromosome 6p12-p11 (EJM1). Here, we describe a new gene in this region, EFHC1, which encodes a protein with an EF-hand motif. Mutation analyses identified five missense mutations in EFHC1 that cosegregated with epilepsy or EEG polyspike wave in affected members of six unrelated families with JME and did not occur in 382 control individuals. Overexpression of EFHC1 in mouse hippocampal primary culture neurons induced apoptosis that was significantly lowered by the mutations. Apoptosis was specifically suppressed by SNX-482, an antagonist of R-type voltage-dependent Ca(2+) channel (Ca(v)2.3). EFHC1 and Ca(v)2.3 immunomaterials overlapped in mouse brain, and EFHC1 coimmunoprecipitated with the Ca(v)2.3 C terminus. In patch-clamp analysis, EFHC1 specifically increased R-type Ca(2+) currents that were reversed by the mutations associated with JME.
Canonical transient receptor potential (TRPC) channels control influxes of Ca 2؉ and other cations that induce diverse cellular processes upon stimulation of plasma membrane receptors coupled to phospholipase C (PLC). Invention of subtype-specific inhibitors for TRPCs is crucial for distinction of respective TRPC channels that play particular physiological roles in native systems. Here, we identify a pyrazole compound (Pyr3), which selectively inhibits TRPC3 channels. Structure-function relationship studies of pyrazole compounds showed that the trichloroacrylic amide group is important for the TRPC3 selectivity of Pyr3. Electrophysiological and photoaffinity labeling experiments reveal a direct action of Pyr3 on the TRPC3 protein. In DT40 B lymphocytes, Pyr3 potently eliminated the Ca 2؉ influx-dependent PLC translocation to the plasma membrane and late oscillatory phase of B cell receptorinduced Ca 2؉ response. Moreover, Pyr3 attenuated activation of nuclear factor of activated T cells, a Ca 2؉ -dependent transcription factor, and hypertrophic growth in rat neonatal cardiomyocytes, and in vivo pressure overload-induced cardiac hypertrophy in mice. These findings on important roles of native TRPC3 channels are strikingly consistent with previous genetic studies. Thus, the TRPC3-selective inhibitor Pyr3 is a powerful tool to study in vivo function of TRPC3, suggesting a pharmaceutical potential of Pyr3 in treatments of TRPC3-related diseases such as cardiac hypertrophy.Ca 2ϩ signaling ͉ pyrazole compounds ͉ TRPC channels ͉ TRPC3
Oxygen (O(2)) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O(2), it is critical to elucidate the molecular mechanisms responsible for O(2) sensing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with different redox potentials reveals the capability of TRPA1 to sense O(2). O(2) sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O(2)-dependent inhibition on TRPA1 activity in normoxia, direct O(2) action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O(2)-sensing mechanism mediated by TRPA1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.