There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.
A proton-conducting coordination polymer glass derived from a protic ionic liquid works as a moldable solid electrolyte and the anhydrous fuel cell showed I–V performance of 0.15 W cm−2 at 120 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.