In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXR␣) and LXR as strong activators of the mouse SREBP-1c promoter. Sterol-regulatory element (SRE)-binding proteins (SREBPs) are transcription factors which belong to the basic helix-loophelix leucine zipper family (3-5). In contrast to other members of this family, SREBPs are synthesized as precursor proteins which remain bound to the endoplasmic reticulum and the nuclear envelope in the presence of sufficient sterol concentrations. Upon sterol deprivation, the precursor protein undergoes a sequential two-step cleavage process to release the NH 2 -terminal portion (28). This mature SREBP then enters the nucleus and activates the transcription of genes involved in cholesterol and fatty acid synthesis by binding to SREs or to palindromic sequences called E boxes within their promoter regions (20, 39). Three forms of SREBP have been characterized: SREBP-1a and -1c (also known as ADD1) (14, 38, 43) and SREBP-2. It has been shown that all of the cultured cells analyzed to date express primarily SREBP-2 and the SREBP1a isoform, whereas most organs, including the liver and adipose tissue, express predominantly SREBP-2 and the SREBP1c isoform (36). SREBP-1a is a stronger activator than SREBP-1c due to its longer transactivation domain and has a wider range of target genes involved in both cholesterol and fatty acid synthesis (30, 31).Lipogenic enzymes, which are involved in energy storage through synthesis of fatty acids and triglycerides, are coordinately regulated at the transcriptional level during different metabolic states (9,11). Recent in vivo studies demonstrated that SREBP-1c plays a crucial role in the dietary regulation of most hepatic lipogenic genes, whereas SREBP-2 is actively involved in the transcription of cholesterogenic enzymes (13). These include studies of the effects of the absence or overexpression of SREBP-1 on hepatic lipogenic gene expression (30,31,33), as well as physiological changes of SREBP-1c protein in normal mice after dietary manipulation such as placement on high-carbohydrate diets, polyunsaturated fatty acid-enriched diets, and fasting-refeeding regimens (12,17,37,40,41). The similar coordinated changes in SREBP-1c and lipogenic gene expression upon fasting and refeeding were also observed in adipose tissue (18). In fat tissue, SREBP-1c (ADD1) appears to be involved in adipocyte differentiation and insulin resistance (19,35). Recent studies suggest that insulin or insulin-facilitated glucose uptake mediates lipogenesis through SREBP-1c induction (7,8,10,21,34). Previous reports on the regulation of SREBP-1c have all demonstrated the induction to be at the mRNA level. Up-regulation of hepatic SREBP-1 mRNA was observed in the livers...
SUMMARY— Intensity of glutamate‐like and/or inosinate‐like taste (umami in Japanese) of various flavor amino acids and flavor nucleotides was studied using sensory analysis and always found proportional to that of monosodium glutamate (MSG) and disodium 5′‐inosinate (IMP), respectively. By application of this fact to a previously obtained equation expressing the relationship between the taste intensity of MSG‐IMP mixture and that of MSG alone, the intensity of umami of the mixture of any flavor amino acids and nucleotides could be expressed as an elementary equation: y = u +γ uv, where u and v are the concentrations of amino acids and nucleotides in terms of the concentrations of MSG and IMP, respectively, in the mixture; y is the equivalent concentration of MSG alone; and γ is a positive constant. Interrelationships within each group of substances were additive.
Previous studies have demonstrated that polyunsaturated fatty acids (PUFAs) suppress sterol regulatory element-binding protein 1c (SREBP-1c) expression and, thus, lipogenesis. In the current study, the molecular mechanism for this suppressive effect was investigated with luciferase reporter gene assays using the SREBP-1c promoter in HEK293 cells. Consistent with previous data, the addition of PUFAs to the medium in the assays robustly inhibited the SREBP-1c promoter activity. Deletion and mutation of the two liver X receptor (LXR)-responsive elements (LXREs) in the SREBP-1c promoter region eliminated this suppressive effect, indicating that both LXREs are important PUFAsuppressive elements. The luciferase activities of both SREBP-1c promoter and LXRE enhancer constructs induced by co-expression of LXR␣ or - were strongly suppressed by the addition of various PUFAs (arachidonic acid > eicosapentaenoic acid > docosahexaenoic acid > linoleic acid), whereas saturated or monounsaturated fatty acids had minimal effects. Gel shift mobility and ligand binding domain activation assays demonstrated that PUFA suppression of SREBP-1c expression is mediated through its competition with LXR ligand in the activation of the ligand binding domain of LXR, thereby inhibiting binding of LXR/retinoid X receptor heterodimer to the LXREs in the SREBP-1c promoter. These data suggest that PUFAs could be deeply involved in nutritional regulation of cellular fatty acid levels by inhibiting an LXR-SREBP-1c system crucial for lipogenesis. Sterol regulatory element (SRE)1 -binding proteins (SREBPs) are membrane-bound transcription factors that belong to the basic helix-loop-helix leucine zipper family (1-3). In the absence of sterols, by means of sterol-regulated cleavage, SREBP enters the nucleus and activates the transcription of genes involved in cholesterol and fatty acid synthesis by binding to an SRE or its related sequences including SRE-like sequences and E-boxes, within their promoter regions (4, 5). There are three forms of SREBP, SREBP-1a and -1c (also known as ADD1) and -2 (6 -8). Most organs, including the liver and adipose tissue, predominantly express SREBP-2 and the -1c isoform of SREBP-1 (9). Recent in vivo studies demonstrate that SREBP-1c plays a crucial role in the dietary regulation of most hepatic lipogenic genes, whereas SREBP-2 is actively involved in the transcription of cholesterogenic enzymes (10). These include studies of the effects of the absence or overexpression of SREBP-1 on hepatic lipogenic gene expression (10 -12) as well as physiological changes of SREBP-1c protein in normal mice refed after fasting (13-17). Polyunsaturated fatty acid (PUFA) administration has been well established as a negative regulator of hepatic lipogenesis as well as an activator of peroxisome proliferator-activated receptor (PPAR) ␣, which is crucial for lipid degradation. Consistent with the notion that SREBP-1c is a dominant regulator for lipogenesis, there are several reports demonstrating that administration of PUFA suppresses ...
Obesity is a common nutritional problem often associated with diabetes, insulin resistance, and fatty liver (excess fat deposition in liver). Leptin-deficient Lep ob / Lep ob mice develop obesity and those obesity-related syndromes. Increased lipogenesis in both liver and adipose tissue of these mice has been suggested. We have previously shown that the transcription factor sterol regulatory element-binding protein-1 (SREBP-1) plays a crucial role in the regulation of lipogenesis in vivo. To explore the possible involvement of SREBP-1 in the pathogenesis of obesity and its related syndromes, we generated mice deficient in both leptin and SREBP-1. In doubly mutant Lep ob/ob ؋ Srebp-1 ؊/؊ mice, fatty livers were markedly attenuated, but obesity and insulin resistance remained persistent. The mRNA levels of lipogenic enzymes such as fatty acid synthase were proportional to triglyceride accumulation in liver. In contrast, the mRNA abundance of SREBP-1 and lipogenic enzymes in the adipose tissue of Lep ob /Lep ob mice was profoundly decreased despite sustained fat, which could explain why the SREBP-1 disruption had little effect on obesity. In conclusion, SREBP-1 regulation of lipogenesis is highly involved in the development of fatty livers but does not seem to be a determinant of obesity in Lep ob /Lep ob mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.