Although interleukin-18 is structurally homologous to IL-1 and its receptor belongs to the IL-1R/Toll-like receptor (TLR) superfamily, its function is quite different from that of IL-1. IL-18 is produced not only by types of immune cells but also by non-immune cells. In collaboration with IL-12, IL-18 stimulates Th1-mediated immune responses, which play a critical role in the host defense against infection with intracellular microbes through the induction of IFN-gamma. However, the overproduction of IL-12 and IL-18 induces severe inflammatory disorders, suggesting that IL-18 is a potent proinflammatory cytokine that has pathophysiological roles in several inflammatory conditions. IL-18 mRNA is expressed in a wide range of cells including Kupffer cells, macrophages, T cells, B cells, dendritic cells, osteoblasts, keratinocytes, astrocytes, and microglia. Thus, the pathophysiological role of IL-18 has been extensively tested in the organs that contain these cells. Somewhat surprisingly, IL-18 alone can stimulate Th2 cytokine production as well as allergic inflammation. Therefore, the functions of IL-18 in vivo are very heterogeneous and complicated. In principle, IL-18 enhances the IL-12-driven Th1 immune responses, but it can also stimulate Th2 immune responses in the absence of IL-12.
IL-18 is a cytokine that is secreted from activated macrophages and induces IFNgamma production. To investigate the in vivo role of IL-18, we generated IL-18-deficient mice. In Propionibacterium acnes (P. acnes)-primed IL-18-deficient mice, LPS-induced IFNgamma production was markedly reduced, despite normal IL-12 induction. Natural killer cell activity was significantly impaired. Th1 cell response after injection of P. acnes or Mycobacterium bovis (bacillus Calmette-Guerin [BCG]) was significantly reduced. Similar results were observed in IL-12-deficient mice. Interestingly, Th1 response was induced after BCG infection in IL-12-deficient mice. We therefore generated mice lacking both IL-18 and IL-12. In these mice, NK activity and Th1 response were further impaired. This demonstrates the important role of both IL-18 and IL-12 in NK activity, as well as in in vivo Th1 response.
Basophils express major histocompatibility complex class II, CD80 and CD86 and produce interleukin 4 (IL-4) in various conditions. Here we show that when incubated with IL-3 and antigen or complexes of antigen and immunoglobulin E (IgE), basophils internalized, processed and presented antigen as complexes of peptide and major histocompatibility complex class II and produced IL-4. Intravenous administration of ovalbumin-pulsed basophils into naive mice 'preferentially' induced the development of naive ovalbumin-specific CD4+ T cells into T helper type 2 (T(H)2) cells. Mice immunized in this way, when challenged by intravenous administration of ovalbumin, promptly produced ovalbumin-specific IgG1 and IgE. Finally, intravenous administration of IgE complexes rapidly induced T(H)2 cells only in the presence of endogenous basophils, which suggests that basophils are potent antigen-presenting cells that 'preferentially' augment T(H)2-IgE responses by capturing IgE complex.
Injection of anti-CD3 antibodies causes prompt expression of interleukin (IL)-4, IL-2, and interferon gamma (IFN-gamma) mRNA among spleen cells. The optimal dose of anti-CD3 for such induction was 1.33 microgram/animal; lymphokine mRNA was first observed at 30 min, peaked at 90 min, and was undetectable (for IL-4) or had declined markedly by 4 h. Cells harvested from spleens of mice injected with anti-CD3 90 min earlier secreted IL-4, IL-2, and IFN-gamma without further stimulation. By contrast, in vitro stimulation with anti-CD3 of spleen cell suspensions or splenic fragments from noninjected donors failed to cause prompt production of IL-4 and, even after 24 h of stimulation, the amount of IL-4 produced in such cells was substantially less than that secreted within 1 h by spleen cell suspensions or splenic fragments from mice injected with anti-CD3 90 min earlier. Production of IL-4 by spleen cells from anti-CD3-injected mice was not inhibited by pretreatment with anti-IL-4 antibody or with IFN-gamma or tumor growth factor beta nor enhanced by treatment with IL-4. By contrast, CTLA-4 immunoglobulin (Ig) treatment clearly diminished IL-4 production in response to in vivo anti-CD3, indicating that cellular interactions involving CD28 (or related molecules) were important in stimulation. Cell sorting analysis indicated that the cells that produced IL-4 in response to in vivo injection of anti-CD3 were highly enriched in CD4pos cells with the phenotype leukocyte cell adhesion molecule-1 (LECAM-1)dull, CD44bright, CD45RBdull, NK1.1pos. Indeed, the small population of CD4pos, NK1.1pos cells had the great majority of the IL-4-producing activity of this population. Injection with Staphylococcal enterotoxin B also caused prompt induction of IL-4 mRNA; the cells that were principally responsible for production also had the phenotype of CD4pos, NK1.1pos. These results suggest that possibility that this rare population of T cells may be capable of secreting IL-4 at the outset of immune responses and thus may act to regulate the pattern of priming of naive T cells, by providing a source of IL-4 to favor the development of T cell helper 2-like IL-4-producing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.