BACKGROUND: Strong resistance to imidacloprid in Nilaparvata lugens (Stål) has developed in Southeast and East Asia. Although the mode of inheritance for resistance is very useful information for pest control, this information is unknown in N. lugens. Here, we established two resistant strains that were selected from field populations in Vietnam and the Philippines, and conducted crossing experiments to determine the inheritance pattern. RESULTS:The resistance ratio of 50% lethal dose (LD 50 ) values for the two resistance-selected strains, i.e., resistant strains originating from Vietnam (VT-Res) and the Philippines (PH-Res), to their control strains were ∼ 8-and 157-fold, respectively. dominance was 0.81 and 0.82, and 0.95 and 0.96, respectively. Analysis of the F 2 populations and backcrosses to the parental strains indicated that resistance is a major-gene trait following Mendelian inheritance. The strength of the resistance was suppressed by pre-treatment with piperonyl butoxide, an inhibitor of cytochrome P450-monooxygenases. CONCLUSION: Our results suggest that imidacloprid resistance in N. lugens is autosomal and an almost completely dominant major-gene trait that is likely manifested by high expression levels of a detoxification enzyme. Reciprocal cross experiments between VT-Res and the susceptible strain (S-strain), and between PH-Res and the S-strain showed that the degree of
BACKGROUND: Long-term monitoring data is helpful to understand the fluctuation of susceptibility and pattern of cross resistance in insecticide resistance management. After the occurrence of imidacloprid resistance, the brown planthopper (BPH) has gradually developed resistance to thiamethoxam and clothianidin since 2010, but not to dinotefuran and nitenpyram. Here, we analyzed susceptibilities data of five neonicotinoids during 2005-2017 in East Asia and Vietnam to conduct cross-resistance patterns among neonicotinoids. To determine the factors of development of cross resistance in laboratory bioassays, we used the imidacloprid resistant and control strains that were selected from filed populations in the Philippines and Vietnam. RESULTS:The Linear Mixed Models (LMM) analyses of insecticide susceptibility data showed that the slope values of imidacloprid resistance effects were 0.68 and 1.09 for resistance to thiamethoxam and clothianidin, respectively. Laboratory bioassay results showed that the LD 50 values for thiamethoxam and clothianidin in resistant strains (1.4-5.5 g g −1 ) were 3.2-16.4 times higher than those in the control strains (0.28-1.5 g g −1 ). However, the increase in the LD 50 values for imidacloprid was not related to that for dinotefuran and nitenpyram based on the results of the LMM analysis and laboratory bioassay. CONCLUSION: Our results demonstrate that the development of imidacloprid resistance result in strong-cross resistance to some neonicotinoids, thiamethoxam and clothianidin, but not to others, dinotefuran and nitenpyram. We anticipate that our findings will be a starting point for understanding mechanism of the different trend of cross resistance by analyzing long-term susceptibility data and laboratory bioassays in insect pests.
Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant's development to avoid hyperparasitism by thickening galls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.