A large imprinted gene cluster in human chromosome 11p15.5 has been implicated in Beckwith-Wiedemann syndrome and Wilms' tumor. We have identified a paternally expressed imprinted gene, PEG8/IGF2AS, in this locus. It is transcribed in the opposite direction to the IGF2 transcripts and some genomic regions are shared with the IGF2 gene, as in the case of the mouse imprinted Igf2as gene reported previously by T. Moore et al. As to the relationship between these genomic regions, the human and mouse genes are very similar but there is no homology in their middle parts. Interestingly, PEG8/IGF2AS and IGF2 were found to be overexpressed in Wilms' tumor samples, at levels over ten and a hundred times higher than that in normal kidney tissues neighboring the tumors, respectively. These findings indicate that PEG8/IGF2AS is a good marker of Wilms' tumor and also suggest the possibility of PEG8/IGF2AS being one of the candidate Wilms' tumor genes.
Most Escherichia coli strains are resistant to n-hexane. E. coli OST4251 is a n-hexane-sensitive strain that was constructed by transferring the n-hexane-sensitive phenotype from a n-hexane-sensitive strain by P1 transduction. OST4251 is resistant to diphenyl ether, which is less harmful than n-hexane to micro-organisms. The genetic determinant responsible for this subtle difference in the solvent resistance is mapped at 1·2 min on the E. coli chromosome. Nucleotide sequence analysis showed that IS2 and IS5 had integrated upstream of the imp/ostA structural gene in OST4251. The integration of IS2 decreased the activity of the imp/ostA promoter. A product of the gene was identified immunologically as an 87 kDa minor protein associated with the outer membrane. Upon transformation with plasmids containing the imp/ostA gene, OST4251 produced a high level of the gene product in the membrane and acquired n-hexane resistance. Thus, the low level of promoter activity resulted in low Imp production and the n-hexane-sensitivity phenotype. It is likely that the gene product contributes to n-hexane resistance by reducing the influx of n-hexane.
Spermiogenesis is a complex process that is regulated by a plethora of genes and interactions between germ and somatic cells. Here we report a novel mutant mouse strain that carries a transgene insertional/translocational mutation and exhibits dominant male sterility. We named the mutation dominant spermiogenesis defect (Dspd). In the testes of Dspd mutant mice, spermatids detached from the seminiferous epithelium at different steps of the differentiation process before the completion of spermiogenesis. Microinsemination using spermatids collected from the mutant testes resulted in the birth of normal offspring. These observations indicate that the major cause of Dspd infertility is (are) a defect(s) in the Sertoli cell-spermatid interaction or communication in the seminiferous tubules. Fluorescent in situ hybridization (FISH) analysis revealed a translocation between chromosomes 7F and 14C at the transgene insertion site. The deletion of a genomic region of chromosome 7F greater than 1 megabase and containing at least six genes (Cttn, Fadd, Fgf3, Fgf4, Fgf15, and Ccnd1) was associated with the translocation. Cttn encodes the actin-binding protein cortactin. Immunohistochemical analysis revealed localization of cortactin beside elongated spermatids in wild-type testes; abnormality of cortactin localization was found in mutant testes. These data suggest an important role of cortactin in Sertoli cell-spermatid interactions and in the Dspd phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.