The amounts of normal and compensatory polyamines of polyamine-requirnmg Escherichia coli mutants grown in the absence of polyamines were determined. Although aminopropylcadaverine, a compensatory polyamine, was synthesized by MA135 (speB) and DR112 (speA speB), no aminopropylcadaverine or only small amounts of aminopropylcadaverine were synthesized by EWH319 (speA speB speC speD) and MA261 (speB speC), respectively. The average mass doubling times of MA135, DR112, MA261, and EWH319 grown in the absence of polyamines were 113, 105, 260, and 318 min, respectively. The correlation of these values with the sum of spermidine plus aminopropylcadaverine suggested that aminopropylcadaverine is important for cell growth in the presence of limiting amounts of normal polyamines. This hypothesis is supported by the results of aminopropylcadaverine stimulation of the in vitro synthesis of polyphenylalanine and MS2 RNA replicase and of its stimulation of the growth of MA261. For the following reasons, it was concluded that aminopropylcadaverine was synthesized preferentially from cadaverine made by ornithine decarboxylase: (i) aminopropylcadaverine was synthesized in relatively large amounts in cells (MA135 and DR112) which possess ornithine decarboxylase; (ii) ornithine decarboxylase catalyzed the decarboxylation of lysine in vitro, and (iii) the in vivo formation of aminopropylcadaverine was inhibited by an inhibitor of ornithine decarboxylase.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.
The functions of acetylpolyamines were examined with respect to stimulation of protein synthesis and cell growth. Unlike polyamines, acetylpolyamines could not lower the optimal Mg2+ concentration of protein synthesis, and the degree of stimulation of protein synthesis by acetylpolyamines was small. The addition of N1-acetylspermine did not stimulate cell growth of a polyamine-requiring mutant of Escherichia coli MA261, although acetylspermine was accumulated in the cells. Acetylspermine did not interfere with polyamine stimulation of protein synthesis and cell growth of E. coli MA261. The binding of acetylpolyamines to RNA was very weak, and the binding of polyamines to RNA was not disturbed significantly by the presence of acetylpolyamines. When the growth of E. coli MA261 was stimulated by addition of polyamines, significant amounts of acetylpolyamines were also formed in the cells. These results suggest that acetylation of polyamines, together with polyamine excretion, may regulate the intracellular level of the parent polyamines when excess amounts of polyamines accumulate intracellularly.
Escherichia coli has three systems for sodium ion extrusion, NhaA, NhaB and ChaA. In this study, we examined the effect of pH on the function of these transporters using mutants having one of them, and found that (1) a mutant having NhaB excreted sodium ions at pH 7.5 but not at pH 8.5, (2) the efflux of sodium ions from mutant cells having ChaA was observed at both pH 7.5 and 8.5, but the activity was lower at pH 7.5, and (3) sodium ions were excreted from mutant cells having NhaA at pH 6.5 to 8.5. The extrusion activity of cells having NhaA was higher than that of cells having NhaB or ChaA. These results indicate that NhaB functions at a pH below 8, and ChaA extrudes sodium ions mainly at an alkaline pH above 8. It was also suggested that the activity of NhaB and ChaA is not enough to maintain a low level of internal sodium ions when the external concentration of sodium ions is high, and NhaA is induced within a wide range of medium pH under such conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.