TDP-43 is the major component protein of ubiquitin-positive inclusions in brains of patients with frontotemporal lobar degeneration (FTLD-TDP) or amyotrophic lateral sclerosis (ALS). Here, we report the characterization of prion-like properties of aggregated TDP-43 prepared from diseased brains. When insoluble TDP-43 from ALS or FTLD-TDP brains was introduced as seeds into SH-SY5Y cells expressing TDP-43, phosphorylated and ubiquitinated TDP-43 was aggregated in a self-templating manner. Immunoblot analyses revealed that the C-terminal fragments of insoluble TDP-43 characteristic of each disease type acted as seeds, inducing seed-dependent aggregation of TDP-43 in these cells. The seeding ability of insoluble TDP-43 was unaffected by proteinase treatment but was abrogated by formic acid. One subtype of TDP-43 aggregate was resistant to boiling treatment. The insoluble fraction from cells harboring TDP-43 aggregates could also trigger intracellular TDP-43 aggregation. These results indicate that insoluble TDP-43 has prion-like properties that may play a role in the progression of TDP-43 proteinopathy.
TDP-43 is the major disease-associated protein involved in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions linked to TDP-43 pathology (FTLD-TDP). Abnormal phosphorylation, truncation and cytoplasmic mis-localization are known to be the characteristics for the aggregated forms of TDP-43, and gain of toxic abnormal TDP-43 or loss of function of physiological TDP-43 have been suggested as the cause of neurodegeneration. However, most of the post-translational modifications or truncation sites in the abnormal TDP-43 in brains of patients remain to be identified by protein chemical analysis. In this study, we carried out a highly sensitive liquid chromatography-mass spectrometry analysis of Sarkosyl-insoluble pathological TDP-43 from brains of ALS patients and identified several novel phosphorylation sites, deamidation sites, and cleavage sites. Almost all modifications were localized in the Gly-rich C-terminal half. Most of the cleavage sites identified in this study are novel and are located in N-terminal half, suggesting that these sites may be more accessible to proteolytic enzymes. The data obtained in this study provide a foundation for the molecular mechanisms of TDP-43 aggregation and ALS pathogenesis.
SNCA duplication is a recognized cause of familial Parkinson's disease (PD). We aimed to explore the genetic and clinical variability in the disease manifestation. Molecular characterization was performed using real-time PCR, SNP arrays, and haplotype analysis. We further studied those patients who were found to harbor SNCA duplication with olfactory function tests, polysomnography, and PET. We identified four new families and one sporadic patient with SNCA duplication. Eleven symptomatic patients from these four families presented with parkinsonism, of which three subsequently developed dementia. The lifetime estimate of overall penetrance was 43.8%. FDG-PET study of symptomatic patients showed hypometabolism in the occipital lobe, whereas asymptomatic carriers of SNCA duplication demonstrated normal glucose metabolism. Symptomatic patients showed abnormal olfactory function and polysomnography and asymptomatic carriers showed normal results. The clinical features of SNCA duplication include parkinsonism with or without dementia. Asymptomatic carriers displayed normal test results with the eldest individual aged 79 years; thus, even a carrier of SNCA duplication may escape the development of PD. This difference in age-associated penetrance may be due to the genetic background or environmental exposures. Further studies of SNCA duplication carriers will help identify disease-modifiers and may open novel avenues for future treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.