Functional regulation of myoglobin (Mb) is thought to be achieved through the heme environment furnished by nearby amino acid residues, and subtle tuning of the intrinsic heme Fe reactivity. We have performed substitution of strongly electron-withdrawing perfluoromethyl (CF(3)) group(s) as heme side chain(s) of Mb to obtain large alterations of the heme electronic structure in order to elucidate the relationship between the O(2) affinity of Mb and the electronic properties of heme peripheral side chains. We have utilized the equilibrium constant (pK(a)) of the "acid-alkaline transition" in metmyoglobin in order to quantitatively assess the effects of the CF(3) substitutions for the electron density of heme Fe atom (rho(Fe)) of the protein. The pK(a) value of the protein was found to decrease by approximately 1 pH unit upon the introduction of one CF(3) group, and the decrease in the pK(a) value with decreasing the rho(Fe) value was confirmed by density functional theory calculations on some model compounds. The O(2) affinity of Mb was found to correlate well with the pK(a) value in such a manner that the P(50) value, which is the partial pressure of O(2) required to achieve 50% oxygenation, increases by a factor of 2.7 with a decrease of 1 pK(a) unit. Kinetic studies on the proteins revealed that the decrease in O(2) affinity upon the introduction of an electron-withdrawing CF(3) group is due to an increase in the O(2) dissociation rate. Since the introduction of a CF(3) group substitution is thought to prevent further Fe(2+)-O(2) bond polarization and hence formation of a putative Fe(3+)-O(2)(-)-like species of the oxy form of the protein [Maxwell, J. C.; Volpe, J. A.; Barlow, C. H.; Caughey, W. S. Biochem. Biophys. Res. Commun. 1974, 58, 166-171], the O(2) dissociation is expected to be enhanced by the substitution of electron-withdrawing groups as heme side chains. We also found that, in sharp contrast to the case of the O(2) binding to the protein, the CO association and dissociation rates are essentially independent of the rho(Fe) value. As a result, the introduction of electron-withdrawing group(s) enhances the preferential binding of CO to the protein over that of O(2). These findings not only resolve the long-standing issue of the mechanism underlying the subtle tuning of the intrinsic heme Fe reactivity, but also provide new insights into the structure-function relationship of the protein.
We analyzed the vibrational frequencies of the Fe-bound carbon monoxide (CO) of myoglobin reconstituted with a series of chemically modified heme cofactors possessing a heme Fe atom with a variety of electron densities. The study revealed that the stretching frequency of Fe-bound CO (ν(CO)) increases with decreasing electron density of the heme Fe atom (ρ(Fe)). This finding demonstrated that the ν(CO) value can be used as a sensitive measure of the ρ(Fe) value and that the π back-donation of the heme Fe atom to CO is affected by the heme π-system perturbation induced through peripheral side chain modifications.
The structure of a carbon monoxide (CO) adduct of a complex between heme and a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), has been characterized using ¹H and ¹³C NMR spectroscopy and density function theory calculations. The study revealed that the heme binds to the 3'-terminal G-quartet of the DNA though a π-π stacking interaction between the porphyrin moiety of the heme and the G-quartet. The π-π stacking interaction between the pseudo-C₂-symmetric heme and the C₄-symmetric G-quartet in the complex resulted in the formation of two isomers possessing heme orientations differing by 180° rotation about the pseudo-C₂ axis with respect to the DNA. These two slowly interconverting heme orientational isomers were formed in a ratio of approximately 1:1, reflecting that their thermodynamic stabilities are identical. Exogenous CO is coordinated to heme Fe on the side of the heme opposite the G-quartet in the complex, and the nature of the Fe-CO bond in the complex is similar to that of the Fe-CO bonds in hemoproteins. These findings provide novel insights for the design of novel DNA enzymes possessing metalloporphyrins as prosthetic groups.
We analyzed the oxygen (O2) and carbon monoxide (CO) binding properties of the H64L mutant of myoglobin reconstituted with chemically modified heme cofactors possessing a heme Fe atom with a variety of electron densities, in order to elucidate the effect of the removal of the distal His64 on the control of both the O2 affinity and discrimination between O2 and CO of the protein by the intrinsic heme Fe reactivity through the electron density of the heme Fe atom (ρFe). The study revealed that, as in the case of the native protein, the O2 affinity of the H64L mutant protein is regulated by the ρFe value in such a manner that the O2 affinity of the protein decreases, due to an increase in the O2 dissociation rate constant, with a decrease in the ρFe value, and that the O2 affinities of the mutant and native proteins are affected comparably by a given change in the ρFe value. On the other hand, the CO affinity of the H64L mutant protein was found to increase, due to a decrease in the CO dissociation rate constant, with a decrease in the ρFe value, whereas that of the native protein was essentially independent of a change in the ρFe value. As a result, the regulation of the O2/CO discrimination in the protein through the ρFe value is affected by the distal His64. Thus, the study revealed that the electronic tuning of the intrinsic heme Fe reactivity through the ρFe value plays a vital role in the regulation of the protein function, as the heme environment furnished by the distal His64 does.
Heme {Fe(II)- or Fe(III)-protoporphyrin IX complex [heme(Fe(2+)) or heme(Fe(3+)), respectively]} binds selectively to the 3'-terminal G-quartet of a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), through a π-π stacking interaction between the porphyrin moiety of the heme and the G-quartet. The binding affinities of some chemically modified hemes(Fe(3+)) for DNA and the structures of complexes between the modified hemes(Fe(2+)) and DNA, with carbon monoxide (CO) coordinated to the heme Fe atom on the side of the heme opposite the G6 G-quartet, have been characterized to elucidate the interaction between the heme and G-quartet in the complexes through analysis of the effects of the heme modification on the structural properties of the complex. The study revealed that the binding affinities and structures of the complexes were barely affected by the heme modification performed in the study. Such plasticity in the binding of heme to the G-quartet is useful for the versatile design of the complex through heme chemical modification and DNA sequence alteration. Furthermore, exchangeable proton signals exhibiting two-proton intensity were observed at approximately -3.5 ppm in the (1)H nuclear magnetic resonance (NMR) spectra of the CO adducts of the complexes. Through analysis of the NMR results, together with theoretical consideration, we concluded that the heme(Fe(2+)) axial ligand trans to CO in the complex is a water molecule (H2O). Identification of the Fe-bound H2O accommodated between the heme and G-quartet planes in the complex provides new insights into the structure-function relationship of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.