Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23 m2 g(-1), respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.
A hyper‐Rayleigh scattering (HRS) study of functionalized ionophores was undertaken on functionalized ionophores consisting of electron acceptor (A) and donor (D) moieties separated by a spacer π (see schematic representation). Besides the value of HRS to study cation complexation, it is shown that complexation is an excellent route to modulate the molecular hyperpolarizability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.