The difference in chemical potential between bulk metal and bulk Si was calculated for various metal atoms using the first-principles calculations. It was shown that such a difference is an adequate measure for the penetration energy of a metal atom from a metal/Si interface into a Si substrate and important in understanding the phenomena around metal/Si interfaces.
We study the effect of indium–gallium–zinc oxide (IGZO) crystallinity on oxygen vacancies that play an important role in the characteristics of IGZO-based devices. Optical and electrical measurements revealed that deep defect levels due to oxygen vacancies are largely eliminated in c-axis-aligned crystal IGZO (CAAC-IGZO), which has increased crystallinity without clear grain boundaries. In this study, the correlation between crystallinity and oxygen vacancy formation has been examined by first-principles calculations to investigate the effect of oxygen vacancies in IGZO. Furthermore, the likelihood of oxygen vacancy formation at an edge portion of single-crystal IGZO has been verified by observations of oxygen atoms at the edge region of the IGZO film by annular bright-field scanning transmission electron microscopy (ABF-STEM). Experimental and calculation results show that the high crystallinity of IGZO is important for the inhibition of oxygen vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.