Inertial measurement units (IMUs) have been used increasingly to characterize long-track speed skating. We aimed to estimate the accuracy of IMUs for use in phase identification of long-track speed skating. Twelve healthy competitive athletes on a university long-track speed skating team participated in this study. Foot pressure, acceleration and knee joint angle were recorded during a 1000-m speed skating trial using the foot pressure system and IMUs. The foot contact and foot-off timing were identified using three methods (kinetic, acceleration and integrated detection) and the stance time was also calculated. Kinetic detection was used as the gold standard measure. Repeated analysis of variance, intra-class coefficients (ICCs) and Bland-Altman plots were used to estimate the extent of agreement between the detection methods. The stance time computed using the acceleration and integrated detection methods did not differ by more than 3.6% from the gold standard measure. The ICCs ranged between 0.657 and 0.927 for the acceleration detection method and 0.700 and 0.948 for the integrated detection method. The limits of agreement were between 90.1% and 96.1% for the average stance time. Phase identification using acceleration and integrated detection methods is valid for evaluating the kinematic characteristics during long-track speed skating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.