SUMMARY Certain low-abundance bacterial species, such as the periodontitis-associated oral bacterium Porphyromonas gingivalis can subvert host immunity to remodel a normally symbiotic microbiota into a dysbiotic, disease-provoking state. However, such pathogens also exploit inflammation to thrive in dysbiotic conditions. How these bacteria evade immunity while maintaining inflammation is unclear. As previously reported, P. gingivalis remodels the oral microbiota into a dysbiotic state by exploiting complement. Now we show that in neutrophils P. gingivalis disarms a host-protective TLR2-MyD88 pathway via proteasomal degradation of MyD88, whereas it activates an alternate TLR2-Mal-PI3K pathway. This alternate TLR2-Mal-PI3K pathway blocks phagocytosis, provides ‘bystander’ protection to otherwise susceptible bacteria, and promotes dysbiotic inflammation in vivo. This mechanism to disengage bacterial clearance from inflammation required an intimate crosstalk between TLR2 and the complement receptor C5aR, and can contribute to the persistence of microbial communities that drive dysbiotic diseases.
Chronic periodontitis is induced by a dysbiotic microbiota and leads to inflammatory destruction of tooth-supporting connective tissue and bone. The third component of complement, C3, is a point of convergence of distinct complement activation mechanisms but its involvement in periodontitis was not previously addressed. We investigated this question using two animal species models, namely, C3-deficient or wild-type mice and non-human primates (NHP) locally treated with a potent C3 inhibitor (the compstatin analog Cp40) or an inactive peptide control. In mice, C3 was required for maximal periodontal inflammation and bone loss and for the sustenance of the dysbiotic microbiota. The effect of C3 on the microbiota was therefore different from that reported for the C5a receptor, which is required for the initial induction of dysbiosis. C3-dependent bone loss was demonstrated in distinct models, including Porphyromonas gingivalis-induced periodontitis, ligature-induced periodontitis, and aging-associated periodontitis. Importantly, local treatment of NHP with Cp40 inhibited ligature-induced periodontal inflammation and bone loss, which correlated with lower gingival crevicular fluid levels of proinflammatory mediators (e.g., IL-17 and RANKL) and decreased osteoclastogenesis in bone biopsy specimens, as compared to control treatment. This is the first time, for any disease, that complement inhibition in NHP was shown to inhibit inflammatory processes that lead to osteoclastogenesis and bone loss. These data strongly support the feasibility of C3-targeted intervention for the treatment of human periodontitis.
DEL-1 is an endothelial cell-secreted protein that regulates LFA-1-integrin–dependent leukocyte recruitment and inflammation in various tissues. Here we identified a novel regulatory mechanism of DEL-1 in osteoclast biology. Specifically, we showed that DEL-1 is expressed by human and mouse osteoclasts and regulates their differentiation and resorptive function. Mechanistically, DEL-1 inhibited the expression of NFATc1, a master regulator of osteoclastogenesis, in a Mac-1-integrin–dependent manner. In vivo mechanistic analysis has dissociated the anti-inflammatory from the anti-bone resorptive action of DEL-1 and identified structural components thereof mediating these distinct functions. Importantly, locally administered human DEL-1 blocked inflammatory periodontal bone loss in nonhuman primates—a relevant model of human periodontitis. The ability of DEL-1 to regulate both upstream (inflammatory cell recruitment) and downstream (osteoclastogenesis) events that lead to inflammatory bone loss paves the way to a new class of endogenous therapeutics for treating periodontitis and perhaps other inflammatory disorders.
es. We show that Del-1, via its interaction with the αvβ3 integrin, promotes several critical functions in the niche, including HSC retention, hematopoietic progenitor cell cycle progression, and myeloid lineage commitment of HSCs. Del-1 thereby regulates myelopoiesis under steady-state conditions and in G-CSF-or inflammation-induced stress myelopoiesis, as well as myelopoiesis reconstitution under regenerative/transplantation conditions. Del-1 is hence a niche component that serves a juxtacrine homeostatic adaptation of the hematopoietic system in inflammation-related and regeneration myelopoiesis. ResultsDel-1 expression in the BM. First, we sought to investigate whether Del-1 is present in the BM. We initially studied the expression of the Del-1-encoding gene Edil3 in the BM niche and hematopoietic cell populations. We found that Edil3 mRNA expression was significantly higher in the endosteal region as compared with the central BM (cBM) ( Figure 1A), suggesting that Del-1 is enriched at the endosteal area of the BM. Analysis of sorted cells from CXCL12-GFP mice (33, 34) demonstrated that Edil3 was highly expressed integrin receptors (29-31). It consists of three N-terminal EGF-like repeats and two C-terminal discoidin I-like domains, and hence also is designated EGF-like repeats and discoidin-I-like domains-3 (EDIL3) (32). We have previously identified Del-1 as an endogenous modulator of leukocyte adhesion through interaction with integrin αLβ2 (LFA-1; CD11a/CD18) (29, 31). Moreover, Del-1 interacts with β3 integrin (CD61) via an Arg-Gly-Asp (RGD) motif on the second EGF-like repeat (30).In the present work, we observed that Del-1 is expressed by several major cellular components of the HSC niche, though not by hematopoietic progenitors. In particular, Del-1 is expressed by those niche cells that have a major role in the maintenance of HSCs, i.e., arteriolar endothelial cells and perivascular CAR cells (3,6,7,9,15). In addition, Del-1 is expressed by cells of the osteoblastic lineage that crucially mediate the engraftment of HSCs in the post-transplantation niche (3,17,18). This spatial distribution of Del-1 raised the possibility that it might be involved in the regulation of hematopoiesis. We addressed this hypothesis using in vivo models of steady-state, regenerative, and stress hematopoiesis and in vitro mechanistic approach-
Del-1 is an endothelial cell-secreted anti-inflammatory protein. In humans and mice, Del-1 expression is inversely related to that of IL-17, which inhibits Del-1 through hitherto unidentified mechanism(s). Here we show that IL-17 downregulates human endothelial cell expression of Del-1 by targeting a critical transcription factor, C/EBPβ. Specifically, IL-17 causes GSK-3β-dependent phosphorylation of C/EBPβ, which is associated with diminished C/EBPβ binding to the Del-1 promoter and suppressed Del-1 expression. This inhibitory action of IL-17 can be reversed at the GSK-3β level by PI3K/Akt signaling induced by D-resolvins. The biological relevance of this regulatory network is confirmed in a mouse model of inflammatory periodontitis. Intriguingly, resolvin-D1 (RvD1) confers protection against IL-17-driven periodontal bone loss in a Del-1-dependent manner, indicating an RvD1-Del-1 axis against IL-17-induced pathologic inflammation. The dissection of signaling pathways regulating Del-1 expression provides potential targets to treat inflammatory diseases associated with diminished Del-1 expression, such as periodontitis and multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.