Multiple lines of evidence, from molecular and cellular to epidemiological, have implicated nicotinic transmission in the pathogenesis of Alzheimer's disease (AD). Here we show the signal transduction mechanism involved in nicotinic receptor-mediated protection against -amyloid-enhanced glutamate neurotoxicity. Nicotine-induced protection was suppressed by an ␣7 nicotinic receptor antagonist (␣-bungarotoxin), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002 and wortmannin), and a Src inhibitor (PP2). Levels of phosphorylated Akt, an effector of PI3K, and Bcl-2 were increased by nicotine. The ␣7 nicotinic receptor was physically associated with the PI3K p85 subunit and Fyn. These findings indicate that the ␣7 nicotinic receptor transduces signals to PI3K in a cascade, which ultimately contributes to a neuroprotective effect. This might form the basis of a new treatment for AD.
It has been shown that estrogen replacement in menopausal women is effective in slowing down the progression of cognitive impairment in Alzheimer's disease. Although recent studies have demonstrated the neuroprotective effects of estrogen, the precise mechanism of neuroprotection has not been elucidated. In the present study, we show that the phosphatidylinositol 3-kinase (PI3-K) cascade is involved in the neuroprotective mechanism stimulated by estrogen. Exposure to glutamate reduced the viability of rat primary cortical neurons. Pretreatment with 10 nM 17beta-estradiol significantly attenuated the glutamate-induced toxicity. This neuroprotective effect of 17beta-estradiol was blocked by co-administration with LY294002, a selective PI3-K inhibitor, but not by co-administration with PD98059, a selective mitogen activated protein kinase kinase inhibitor. Pretreatment with ICI182780, a specific estrogen receptor antagonist, also blocked the neuroprotection. Immunoblotting assay revealed that treatment with 17beta-estradiol induced the phosphorylation of Akt/PKB, an effector immediately downstream of PI3-K. These results suggest that PI3-K mediates the neuroprotective effect of 17beta-estradiol against glutamate-induced neurotoxicity.
Estrogen replacement therapy in menopausal women has been suggested to be beneficial in preventing the progression of cognitive impairment in Alzheimer disease. We demonstrated previously that the phosphatidylinositol 3-kinase (PI3-K)/Akt signal transduction pathway plays a pivotal role on the neuroprotection provided by 17beta-estradiol against acute glutamate toxicity. In the present study, we investigated the mechanism of neuroprotection against apoptosis because acute glutamate toxicity predominantly induced necrosis. 17beta-estradiol provided neuroprotection against apoptosis induced by staurosporine. This neuroprotection was inhibited by pretreatment with a PI3-K inhibitor, LY294002. An estrogen receptor specific antagonist, ICI182780, also suppressed the neuroprotection provided by 17beta-estradiol. Western blotting analysis demonstrated that treatment with 17beta-estradiol induced the phosphorylation of Akt within 5 min, which was suppressed by pretreatment with LY294002 and ICI182780. Furthermore, 17beta-estradiol induced phosphorylation of the cAMP response element binding protein (CREB) at Ser(133) within 15 min and then upregulated Bcl-2 in a PI3-K/Akt-dependent manner. Because CREB is known to be a transcription factor for Bcl-2, these results suggest that 17beta-estradiol exerts its antiapoptotic effects by CREB phosphorylation and Bcl-2 upregulation via nongenomic activation of the PI3-K/Akt pathway in cultured cortical neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.