In order to secure the supply source as well as promote the further utilization of forest biomass following the completion of the Feed-in Tariff Scheme for Renewable Energy (FIT), small-diameter trees, including samples from not only young planted forests but also broad-leaved trees from coppice forests, can be expected to be a prospective solution in Japan. With the aim of discussing the most effective method of harvesting such small-diameter trees as unutilized forest biomass appropriate for Japan, a simplified model forest was assumed in this study, while the harvesting of small-diameter trees was investigated with a truck-mounted multi-tree felling head and time-studied. As a result, the machine used in the experiment could fell a maximum of six trees in a row from a forest road, but the harvesting (felling, accumulating, and chipping) cost was the lowest when the machine felled five trees in a row.
In order to secure a supply of forest biomass, as well as promote further utilization following the completion of the Feed-in-Tariff Scheme for Renewable Energy (FIT), small-diameter trees such as cleanings from young planted forests and broad-leaved trees from coppice forests are prospective resources in Japan. The goal of this study was to discuss effective methods for harvesting the small-diameter trees that are unutilized forest biomass in Japan. This study assumed a simplified model forest and conducted experiments and time studies of the harvesting of small-diameter trees with a truck-mounted multi-tree felling head. As a result, the machine used in the experiment could fell a maximum of six trees inward in a row from a forest road. However, the harvesting cost (felling, accumulating and chipping) was cheapest when the machine felled five trees inward in a row. Lengthening the maximum reach of a felling head to fell trees deeper inward in a row appeared effective in increasing the number of harvested trees. From the perspective of minimizing the harvesting cost, however, there were upper limits to the number of trees felled inward as well as to the maximum reach of a felling head. The results of a sensitivity analysis suggested the following machine improvements could be considered in future policy: increasing the moving velocity of a felling head and the maximum number of trees that can be held at a time are effective if it is possible to lengthen the maximum reach of a felling head. Meanwhile, shortening the machine’s moving time among operation points is also effective if the maximum reach of a felling head cannot be lengthened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.