Formation of one procentriole next to each pre-existing centriole is essential for centrosome duplication, robust bipolar spindle assembly and maintenance of genome integrity. However, the mechanisms maintaining strict control over centriole copy number are incompletely understood. Here we show that Plk4 and STIL, the key regulators of centriole formation, form a protein complex that provides a scaffold for recruiting HsSAS-6, a major component of the centriolar cartwheel, at the onset of procentriole formation. Furthermore, we demonstrate that phosphorylation of STIL by Plk4 facilitates the STIL/HsSAS-6 interaction and centriolar loading of HsSAS-6. We also provide evidence that negative feedback by centriolar STIL regulates bimodal centriolar distribution of Plk4 and seemingly restricts occurrence of procentriole formation to one site on each parental centriole. Overall, these findings suggest a mechanism whereby coordinated action of three critical factors ensures formation of a single procentriole per parental centriole.
The number of centrioles is tightly controlled to ensure bipolar spindle assembly, which is a prerequisite to maintain genome integrity. However, our understanding of the fundamental principle that governs the formation of a single procentriole per parental centriole is incomplete. Here, we show that the local restriction of Plk4, a master regulator of the procentriole formation, is achieved by a bimodal interaction of STIL with Plk4. We demonstrate that the conserved short coiled-coil region of STIL binds to and protects Plk4 from protein degradation at the site of procentriole formation. On the other hand, the conserved C-terminal region of STIL named truncated in microcephaly (TIM) domain promotes autophosphorylation and degradation of adjacent Plk4 by the direct interaction. Thus, we propose that positive and negative regulation based on the bimodal binding of Plk4 and STIL ensures the formation of a single procentriole per parental centriole.
Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes. Depletion of RBM14 in human cells induces ectopic formation of centriolar protein complexes through function of the STIL/CPAP complex. Intriguingly, the formation of such structures seems not to require the cartwheel structure that normally acts as a scaffold for centriole formation, whereas they can retain pericentriolar material and microtubule nucleation activity. Moreover, we find that, upon RBM14 depletion, a part of the ectopic centriolar protein complexes in turn assemble into structures more akin to centrioles, presumably by incorporating HsSAS-6, a cartwheel component, and cause multipolar spindle formation. We further demonstrate that such structures assemble in the cytoplasm even in the presence of pre-existing centrioles. This study sheds light on the possibility that ectopic formation of aberrant structures related to centrioles may contribute to genome instability and tumorigenesis.
At the onset of procentriole formation, a structure called the cartwheel is formed adjacent to the pre-existing centriole. SAS-6 proteins are thought to constitute the hub of the cartwheel structure. However, the exact function of the cartwheel in the process of centriole formation has not been well characterized. In this study, we focused on the functions of human SAS-6 (HsSAS-6, also known as SASS6). By using an in vitro reconstitution system with recombinant HsSAS-6, we first observed its conserved molecular property of forming the central part of the cartwheel structure. Furthermore, we uncovered critical functions of HsSAS-6 by using a combination of an auxin-inducible HsSAS-6-degron (AID) system and super-resolution microscopy in human cells. Our results demonstrate that the HsSAS-6 is required not only for the initiation of centriole formation, but also for the stabilization of centriole intermediates. Moreover, after procentriole formation, HsSAS-6 is necessary for limiting Plk4 accumulation at the centrioles and thereby suppressing the formation of initiation sites that would otherwise promote the development of extra procentrioles. Overall, these findings illustrate the conserved and fundamental functions of the cartwheel in centriole duplication.
An RNAi screen in the Caenorhabditis elegans gonad identifies new regulators for centrosome behavior in oogenesis. LIN-41 is found to be a promoter for centrosome elimination in oocytes. Moreover, LIN-41 depletion results in ectopic activation of centrosomes and abnormal chromosome behavior in female meiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.