Molecular adaptors/scaffolds have indispensable roles in the activation of lymphocytes. In this report, we have demonstrated the role of tyrosine phosphorylation of an adaptor protein 3BP2 (c-Abl-SH3 domain binding protein-2, also known as SH3BP2) in T cell receptor (TCR)-mediated activation of transcription factor. Short interfering RNA for 3BP2 suppresses the expression level of endogenous 3BP2 and inhibits TCR-mediated activation of interleukin (IL)-2 promoter and nuclear factor of activated T cells (NFAT) element. Engagement of TCR induces tyrosine phosphorylation and lipid raft translocation of 3BP2. The overexpression studies reveal that substitution of 3BP2-Tyr(183), Tyr(446), or Arg(486) in the SH2 domain suppresses TCR-mediated activation of NFAT. Point mutations of 3BP2 cannot affect the translocation of 3BP2 into the lipid raft. Phosphorylation of Tyr(183) is required for the interaction with Vav1, the guanine nucleotide exchanging factor of Rac1. In fact, overexpression of dominant-negative form of Rac1 inhibits TCR-mediated activation of NFAT. Phosphorylation of Tyr(446) recruits the SH2 domain of Lck for the optimal activation of transcription factors. Furthermore, point mutation of Arg(486) in the 3BP2-SH2 domain that couples ZAP-70 to LAT dramatically reduces NFAT activation. These results suggest that the site-directed functions of 3BP2 induce the activation of transcription factors.
Ubiquitin-protein ligase Cbl-b negatively regulates high affinity IgE receptor (FcepsilonRI)-mediated degranulation and cytokine gene transcription in mast cells. In this study, we have examined the role of a truncated variant of Cbl-b related to the rat model of type 1 diabetes mellitus using the mast cell signaling model. Overexpression of the truncated Cbl-b that lacks the C-terminal region did not suppress the activation of proximal and distal signaling molecules leading to degranulation. FcepsilonRI-mediated tyrosine phosphorylation of Syk, Gab2, and phospholipase C-gamma1, and activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAP kinase), and inhibitor of nuclear factor kappaB kinase (IKK), and generation of Rac1 are unaffected in cells overexpressing the truncated Cbl-b in the lipid raft. On the other hand, FcepsilonRI-mediated transcriptional activation of nuclear factor of activated T cells (NFAT), and transcription of interleukin-3 (IL-3) and IL-4 mRNA are inhibited by overexpression of the truncated variant of Cbl-b. This suppression parallels the re-compartmentalization of specific effector molecules in the lipid raft. These structural and functional analyses reveal the mechanism underlying the selective inhibition of cellular signaling by the truncated variant of Cbl-b related to insulin-dependent diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.