Carnosic acid, a diterpene in rosemary, is considered to be beneficial in the prevention of chronic neurodegenerative diseases. Recently, it has been found that drugs with antiangiogenic activity lower the risk of neurodegenerative diseases. Thus it is of interest whether carnosic acid has antiangiogenic activity. In this study, carnosic acid suppressed microvessel outgrowth on ex vivo angiogenesis assay using a rat aortic ring at higher than 10 µM. The antiangiogenic effect of carnosic acid was found in angiogenesis models using human umbilical vein endothelial cells with regard to tube formation on reconstituted basement membrane, chemotaxis and proliferation. Although the carnosol in rosemary also suppressed angiogenesis, its effect was not more potent than that of carnosic acid in the ex vivo model. These results suggest that carnosic acid and rosemary extract can be useful in the prevention of disorders due to angiogenesis, and that their antiangiogenic effect can contribute to a neuroprotective effect.
This study demonstrated that 0.5% dietary rutin, ellagic acid, or curcumin markedly increased cecal succinate levels in rats fed a high-fat diet, whereas catechin, caffeic acid, and quercetin did not. Other organic acids were modestly or hardly affected by polyphenols. To clarify the effects of succinate levels increased by polyphenols, this study examined the effects of succinate on the growth and proliferation of colon cancer cells and angiogenesis. The growth and proliferation of HT29 human colon cancer cells and angiogenesis in an ex vivo model were significantly inhibited by succinate at a dose close to that in the cecum of rats fed polyphenols. Furthermore, succinate inhibited the migration of human umbilical vein endothelial cells. These findings suggest that the consumption of some polyphenols affects the health and diseases of the large intestine by elevating succinate.
Vitamins play essential roles in cellular reactions and maintain human health. Recent studies have revealed that some vitamins including D3, B6 and K2 and their derivatives have an anti-cancer effect. As a mechanism, their inhibitory effect on cancer-related angiogenesis has been demonstrated. Vitamin K2 (menaquinones) has an anti-cancer effect in particular for hepatic cancer and inhibits angiogenesis. In the current study, we demonstrated that sole vitamin K3 (menadione) selectively inhibits the in vitro activity of eukaryotic DNA polymerase γ, which is a mitochondrial DNA polymerase, and suppresses angiogenesis in a rat aortic ring model. The anti-angiogenic effect of vitamin K3 has been shown in angiogenesis models using human umbilical vein endothelial cells (HUVECs) with regard to HUVEC growth, tube formation on reconstituted basement membrane and chemotaxis. These results suggest that vitamin K3 may be a potential anti-cancer agent like vitamin K2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.