A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X-ray diffraction photographs taken utilizing the fixed-film and fixed-crystal method for the metallic state revealed the presence of diffuse scattering with line shapes parallel to the a* axis indexed as (-, n + 0.5, l) (n; integer). Diffuse scattering with k = n + 0.5 is considered to originate from the 2-fold periodical ordering corresponding to -Pt(2+)-Pt(2+)-I-Pt(3+)-Pt(3+)-I- or -Pt(2+)-Pt(3+)-I-Pt(3+)-Pt(2+)-I- in an extremely short time scale. Diffuse lines corresponding to 2-D ordering progressively decrease in intensity below 252 K and are converted to the diffuse planes corresponding to 1-D ordering near T(M-S). Furthermore, diffuse planes condensed into superlattice reflections below T(M-S). Polarized Raman spectra show temperature dependence through a drastic low-energy shift of the Pt-I stretching mode and also through broadening of bands above T(M-S).
The conformational stability of 2-(methylthio)ethanol has been studied by matrix-isolation infrared spectroscopy and ab initio MO calculations. In an argon matrix, the conformer with gauche-gauche-gauche′ (GGg′) around the CS-C-C-OH bonds is the most stable and the G′Gg′ conformer is the second most stable. These and the TGg′ conformers are stabilized by intramolecular hydrogen bonding between the hydroxyl hydrogen atom and the sulfur atom. The relative strength of the hydrogen bonding in these conformers is in the order GGg′ > TGg′ > G′Gg′, as estimated from the nonbonded OH‚‚‚S distance. In the G′Gg′ conformer, an additional intramolecular interaction between the methyl hydrogen atom and the hydroxyl oxygen atom is involved. The relative strength of this 1,5-CH‚‚‚O interaction in the G′Gg′ conformer is the least among the three relevant conformers with G′G around the CS-C-COH bonds. The calculated results indicate that the geometry of this conformational form is considerably distorted so that it is simultaneously accessible to both of the interactions. This geometry is, however, not best suited for the respective interactions to be the most effective. The results for 2-(methylthio)ethanol have been compared with those for 2-methoxyethanol, in which the analogous intramolecular interactions are involved. The present study emphasizes the importance of the intramolecular interactions in the conformational stabilization of 2-(methylthio)ethanol and other relevant compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.