ATR kinase activates the S-phase checkpoint when replication forks stall at sites of DNA damage. This event also causes phosphorylation of the Fanconi anemia (FA) protein FANCI, triggering its monoubiquitination of the key DNA repair factor FANCD2 by the FA core E3 ligase complex, thereby promoting this central pathway of DNA repair which permits replication to be restarted. However, the interplay between ATR and the FA pathway has been unclear. In this study, we present evidence that their action is directly linked, gaining insights into this relationship in a DT40 mutant cell line that is conditionally deficient in the critical ATR-binding partner protein ATRIP. Using this system, we showed that ATRIP was crucial for DNA damage-induced FANCD2 monoubiquitination and FANCI phosphorylation. ATR kinase phosphorylated recombinant FANCI protein in vitro, which was facilitated by the presence of FANCD2. Mechanistic investigations revealed that the RPA region but not the TopBP1 region of ATRIP was required for FANCD2 monoubiquitination, whereas Chk1 phosphorylation relied upon both domains. Together, our findings identify ATR as the kinase responsible for activating the FA pathway of DNA repair. Cancer Res; 72(5);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.