SUMMARY While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.
SummaryBackgroundIncomplete surgical resection of medulloblastoma is controversially considered a marker of high-risk disease; driving aggressive surgical resections, “second-look” surgeries, and/or intensified chemoradiotherapy. All prior publications evaluating the clinical importance of extent of resection (EOR) failed to account for molecular subgroup. We analysed the prognostic value of EOR across 787 medulloblastoma samples in a subgroup-specific manner.MethodsWe retrospectively identified patients from Medulloblastoma Advanced Genomics International Consortium (MAGIC) centres with a histological diagnosis of medulloblastoma and complete extent of resection and survival data. Specimens were collected from 35 international institutions. Medulloblastoma subgroup affiliation was determined using nanoString gene expression profiling on frozen or formalin-fixed paraffin-embedded tissues. Extent of resection (EOR) based on post-operative imaging was classified as gross total (GTR), near total (NTR, <1·5cm2), or subtotal (STR, ≥ 1·5cm2). Overall survival (OS) and progression-free survival (PFS) multivariable analyses including subgroup, age, metastatic status, geographical location of therapy (North America/Australia vs world), and adjuvant therapy regimen were performed. The primary endpoint was the impact of surgical EOR by molecular subgroup and other clinical variables on OS and PFS.Findings787 medulloblastoma patients (86 WNT, 242 SHH, 163 Group 3, and 296 Group 4) were included in a multivariable Cox model of PFS and OS. The marked benefit of EOR in the overall cohort was greatly attenuated after including molecular subgroup in the multivariable analysis. There was an observed PFS benefit of GTR over STR (hazard ration [HR] 1·45, 95% CI; 1·07–1·96, p=0·02) but there was no observed PFS or OS benefit of GTR over NTR (HR 1·05, 0·71–1·53, p=0·82 and HR 1·14, 0·75–1·72, p=0.55). There was no statistically significant survival benefit to greater EOR for patients with WNT, SHH, or Group 3 patients (HR 1·03, 0·67–1·58, p=0·9 for STR vs. GTR). There was a PFS benefit for GTR over STR in patients with Group 4 medulloblastoma (HR1·97, 1·22–3·17, p=0·01), particularly those with metastatic disease (HR 2·22, 1–4·93, p=0·05). A nomogram based on this multivariable cox proportional hazards model shows the comparably smaller impact of EOR on relative risk for PFS and OS than subgroup affiliation, metastatic status, radiation dose, and adjuvant chemotherapy.InterpretationThe prognostic benefit of EOR for patients with medulloblastoma is attenuated after accounting for molecular subgroup affiliation. Although maximal safe surgical resection should remain the standard of care, surgical removal of small residual portions of medulloblastoma is not recommended when the likelihood of neurological morbidity is high as there is no definitive benefit to GTR over NTR. Our results suggest a re-evaluation of the long-term implications of intensified craniospinal irradiation (36 Gy) in children with small residual portions of medullobla...
The prognostic impact of TERT mutations has been controversial in IDH-wild tumors, particularly in glioblastomas (GBM). The controversy may be attributable to presence of potential confounding factors such as MGMT methylation status or patients’ treatment. This study aimed to evaluate the impact of TERT status on patient outcome in association with various factors in a large series of adult diffuse gliomas. We analyzed a total of 951 adult diffuse gliomas from two cohorts (Cohort 1, n = 758; Cohort 2, n = 193) for IDH1/2, 1p/19q, and TERT promoter status. The combined IDH/TERT classification divided Cohort 1 into four molecular groups with distinct outcomes. The overall survival (OS) was the shortest in IDH wild-type/TERT mutated groups, which mostly consisted of GBMs (P < 0.0001). To investigate the association between TERT mutations and MGMT methylation on survival of patients with GBM, samples from a combined cohort of 453 IDH-wild-type GBM cases treated with radiation and temozolomide were analyzed. A multivariate Cox regression model revealed that the interaction between TERT and MGMT was significant for OS (P = 0.0064). Compared with TERT mutant-MGMT unmethylated GBMs, the hazard ratio (HR) for OS incorporating the interaction was the lowest in the TERT mutant-MGMT methylated GBM (HR, 0.266), followed by the TERT wild-type-MGMT methylated (HR, 0.317) and the TERT wild-type-MGMT unmethylated GBMs (HR, 0.542). Thus, patients with TERT mutant-MGMT unmethylated GBM have the poorest prognosis. Our findings suggest that a combination of IDH, TERT, and MGMT refines the classification of grade II-IV diffuse gliomas.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0351-2) contains supplementary material, which is available to authorized users.
Introduction Our group has conducted extensive basic and preclinical studies of the use of human induced pluripotent cell (iPSC)-derived neural stem/progenitor cell (hiPSC-NS/PC) grafts in models of spinal cord injury (SCI). Evidence from animal experiments suggests this approach is safe and effective. We are preparing to initiate a first-in-human clinical study of hiPSC-NS/PC transplantation in subacute SCI. Setting NS/PCs were prepared at a Good Manufacturing Practice-grade cell processing facility at Osaka National Hospital using a clinical-grade integration-free hiPSC line established by the iPSC Stock Project organized by the Kyoto University Center for iPS Cell Research and Application. After performing all quality checks, the long-term safety and efficacy of cells were confirmed using immunodeficient mouse models. Methods The forthcoming clinical study uses an open-label, single-arm design. The initial follow-up period is 1 year. The primary objective is to assess the safety of hiPSC-NS/PC transplantation in patients with subacute SCI. The secondary objective is to obtain preliminary evidence of its impact on neurological function and quality-of-life outcomes. Four patients with C3/4-Th10 level, complete subacute (within 24 days post-injury) SCI will be recruited. After obtaining consent, cryopreserved cells will be thawed and prepared following a multi-step process including treatment with a γ-secretase inhibitor to promote cell differentiation. A total of 2 × 10 6 cells will be transplanted into the injured spinal cord parenchyma 14–28 days post-injury. Patients will also receive transient immunosuppression. This study protocol has been reviewed and approved by the Certified Committee for Regenerative Medicine and the Japanese Ministry of Health, Labor and Welfare (University Hospital Medical Information Network Clinical Trials Registry [UMIN-CTR] number, UMIN000035074; Japan Registry of Clinical Trials [jRCT] number, jRCTa031190228). Discussion/conclusion We plan to start recruiting a patient as soon as the COVID-19 epidemic subsides. The primary focus of this clinical study is safety, and the number of transplanted cells may be too low to confirm efficacy. After confirming safety, a dose-escalation study is planned.
Neural stem/progenitor cells (NSPCs) proliferate as aggregates in vitro, but the mechanism of aggregation is not fully understood. Here, we report that aggregation promotes the proliferation of NSPCs. We found that the proliferation rate was linear and depended on the size of the aggregate; that is, the population doubling time of the NSPCs gradually decreased as the diameter approached 250 lm and flattened to a nearly constant value beyond this diameter. Given this finding, and with the intent of enhancing the efficiency of human NSPC expansion, we induced the NSPCs to form aggregates close to 250 lm in diameter quickly by culturing them in plates with Ubottomed wells. The NSPCs formed aggregates effectively in the U-bottomed wells, with cell numbers approximately 1.5 times greater than those in the aggregates that formed spontaneously in flat-bottomed wells. In addition, this effect of aggregation involved cell-cell signaling molecules of the Notch1 pathway. In the U-bottomed wells, Hes1 and Hes5, which are target genes of the Notch signal, were expressed at higher levels than in the control, flat-bottomed wells. The amount of cleaved Notch1 was also higher in the cells cultured in the U-bottomed wells. The addition of g-secretase inhibitor, which blocks Notch signaling, suppressed cell proliferation in the U-bottomed wells. These results suggest that the three-dimensional architecture of NSPC aggregates would create a microenvironment that promotes the proliferation of human NSPCs. V V C 2006 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.