Theory building in science requires replication and integration of findings regarding a particular research question. Second-order meta-analysis (i.e., a meta-analysis of meta-analyses) offers a powerful tool for achieving this aim, and we use this technique to illuminate the controversial field of cognitive training. Recent replication attempts and large meta-analytic investigations have shown that the benefits of cognitive-training programs hardly go beyond the trained task and similar tasks. However, it is yet to be established whether the effects differ across cognitive-training programs and populations (children, adults, and older adults). We addressed this issue by using second-order meta-analysis. In Models 1 (k = 99) and 2 (k = 119), we investigated the impact of working-memory training on near-transfer (i.e., memory) and far-transfer (e.g., reasoning, speed, and language) measures, respectively, and whether it is mediated by the type of population. Model 3 (k = 233) extended Model 2 by adding six meta-analyses assessing the far-transfer effects of other cognitive-training programs (video-games, music, chess, and exergames). Model 1 showed that working-memory training does induce near transfer, and that the size of this effect is moderated by the type of population. By contrast, Models 2 and 3 highlighted that fartransfer effects are small or null. Crucially, when placebo effects and publication bias were controlled for, the overall effect size and true variance equaled zero. That is, no impact on far-transfer measures was observed regardless of the type of population and cognitive-training program. The lack of generalization of skills acquired by training is thus an invariant of human cognition.
This preregistered study tested three theoretical proposals for how children form productive yet restricted linguistic generalizations, avoiding errors such as *The clown laughed the man , across three age groups (5–6 years, 9–10 years, adults) and five languages (English, Japanese, Hindi, Hebrew and K'iche'). Participants rated, on a five-point scale, correct and ungrammatical sentences describing events of causation (e.g., *Someone laughed the man; Someone made the man laugh ; Someone broke the truck ; ?Someone made the truck break ). The verb-semantics hypothesis predicts that, for all languages, by-verb differences in acceptability ratings will be predicted by the extent to which the causing and caused event (e.g., amusing and laughing) merge conceptually into a single event (as rated by separate groups of adult participants). The entrenchment and preemption hypotheses predict, for all languages, that by-verb differences in acceptability ratings will be predicted by, respectively, the verb's relative overall frequency, and frequency in nearly-synonymous constructions (e.g., X made Y laugh for *Someone laughed the man ). Analysis using mixed effects models revealed that entrenchment/preemption effects (which could not be distinguished due to collinearity) were observed for all age groups and all languages except K'iche', which suffered from a thin corpus and showed only preemption sporadically. All languages showed effects of event-merge semantics, except K'iche' which showed only effects of supplementary semantic predictors. We end by presenting a computational model which successfully simulates this pattern of results in a single discriminative-learning mechanism, achieving by-verb correlations of around r = 0.75 with human judgment data.
Speech segmentation is supported by multiple sources of information that may either inform language processing specifically, or serve learning more broadly. The Iambic/Trochaic Law (ITL), where increased duration indicates the end of a group and increased emphasis indicates the beginning of a group, has been proposed as a domain-general mechanism that also applies to language. However, language background has been suggested to modulate use of the ITL, meaning that these perceptual grouping preferences may instead be a consequence of language exposure. To distinguish between these accounts, we exposed native-English and native-Japanese listeners to sequences of speech (Experiment 1) and nonspeech stimuli (Experiment 2), and examined segmentation using a 2AFC task. Duration was manipulated over 3 conditions: sequences contained either an initial-item duration increase, or a final-item duration increase, or items of uniform duration. In Experiment 1, language background did not affect the use of duration as a cue for segmenting speech in a structured artificial language. In Experiment 2, the same results were found for grouping structured sequences of visual shapes. The results are consistent with proposals that duration information draws upon a domain-general mechanism that can apply to the special case of language acquisition.
Theory building in science requires replication and integration of findings regarding a particular research question. Second-order meta-analysis (i.e., a meta-analysis of meta-analyses) offers a powerful tool for achieving this aim, and we use this technique to illuminate the controversial field of cognitive training. Recent replication attempts and large meta-analytic investigations have shown that the benefits of cognitive-training programs hardly go beyond the trained task and similar tasks. However, it is yet to be established whether the effects differ across cognitive-training programs and populations (children, adults, and older adults). We addressed this issue by using second-order meta-analysis. In Models 1 (k = 99) and 2 (k = 119), we investigated the impact of working-memory training on near-transfer (i.e., memory) and far-transfer (e.g., reasoning, speed, and language) measures, respectively, and whether it is mediated by the type of population. Model 3 (k = 233) extended Model 2 by adding six meta-analyses assessing the far-transfer effects of other cognitive-training programs (video-games, music, chess, and exergames). Model 1 showed that working-memory training does induce near transfer, and that the size of this effect is moderated by the type of population. By contrast, Models 2 and 3 highlighted that far-transfer effects are small or null. Crucially, when placebo effects and publication bias were controlled for, the overall effect size and true variance equaled zero. That is, no impact on far-transfer measures was observed regardless of the type of population and cognitive-training program. The lack of generalization of skills acquired by training is thus an invariant of human cognition.
This study aims to disentangle the often‐confounded effects of input frequency and morphophonological complexity in the acquisition of inflection, by focusing on simple and complex verb forms in Japanese. Study 1 tested 28 children aged 3;3–4;3 on stative (complex) and simple past forms, and Study 2 tested 30 children aged 3;5–5;3 on completive (complex) and simple past forms, with both studies using a production priming paradigm. Mixed effects models for children's responses were built to test the prediction that children's verb use is explained by the relative bias in input frequency between the two inflectional forms. Although Study 1 did not show a significant effect of input bias (apparently due to problems with item selection), Study 2, which corrected for this problem, yielded the predicted relationship. These findings suggest that input frequency effects, at the level of different inflectional forms of the same verb stem, hold even after controlling for morphophonological complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.