We describe a simple and affordable “Disposable electrode printed (DEP)-On-Go” sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode chips. We present the analytical performance of our device for the sensitive detection of major heavy metal ions, namely, mercury, cadmium, lead, arsenic, zinc, and copper with detection limits of 1.5, 2.6, 4.0, 5.0, 14.4, and, 15.5 μg·L−1, respectively. Importantly, the utility of this device is extended to detect multiple heavy metals simultaneously with well-defined voltammograms and similar sensitivity. Finally, “DEP-On-Go” was successfully applied to detect heavy metals in real environmental samples from groundwater, tap water, house dust, soil, and industry-processed rice and noodle foods. We evaluated the efficiency of this system with a linear correlation through inductively coupled plasma mass spectrometry, and the results suggested that this system can be reliable for on-site screening purposes. On-field applications using real samples of groundwater for drinking in the northern parts of India support the easy-to-detect, low-cost (<1 USD), rapid (within 5 min), and reliable detection limit (ppb levels) performance of our device for the on-site detection and monitoring of multiple heavy metals in resource-limited settings.
[reaction: see text] A triphenylmethyl (trityl) ether was reductively and instantaneously cleaved by triethylsilane in the presence of a catalytic amount of TES- (or TMS)-triflate. The reaction conditions are mild enough to achieve reduction in the presence of a variety of acid-sensitive functional groups. Upon a mild acidic treatment of the crude product, the corresponding alcohol is obtained in high yield.
This study investigated whether reducing agents such as quercetin and iron(II) facilitate formation of nitric oxide (NO) gas from orally ingested nitrite in an vivo study. When 3 mg/kg Na (15)NO2 was orally administered to rats with or without iron(II) or quercetin, Hb (15)NO, which is indicative of systemic (15)NO, was detected in the blood, with the maximum blood concentration of Hb (15)NO at 15 min after nitrite or nitrite plus quercetin treatment, whereas after administration of nitrite plus iron(II) or nitrite plus iron(II) and quercetin, the time was shortened to 10 min. Interestingly, iron(II), quercetin, or iron(II) plus quercetin did not affect the total amount of Hb (15)NO generated from orally administered Na (15)NO2. However, the systemic nitrite concentration was significantly decreased in the presence of iron(II) or iron(II) plus quercetin. These results may indicate that iron(II) is critical to the generation of NO gas from nitrite, whereas quercetin contributed little under the in vivo experimental conditions.
Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81–15,000 U/mL, salivary IgG: 3.4–330 U/mL, and salivary IgA: 58–870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.