Recently the clock genes have been reported to play some roles in neural transmitter systems, including the dopamine system, as well as to regulate circadian rhythms. Abnormalities in both of these mechanisms are thought to be involved in the pathophysiology of major mental illness such as schizophrenia and mood disorders including bipolar disorder (BP) and major depressive disorder (MDD). Recent genetic studies have reported that CLOCK, one of the clock genes, is associated with these psychiatric disorders. Therefore, we investigated the association between the six tagging SNPs in CLOCK and the risk of these psychiatric disorders in Japanese patients diagnosed with schizophrenia (733 patients), BP (149) and MDD (324), plus 795 Japanese controls. Only one association, with schizophrenia in females, was detected in the haplotype analysis (P = 0.0362). However, this significance did not remain after Bonferroni correction (P = 0.0724). No significant association was found with BP and MDD. In conclusion, we suggest that CLOCK may not play a major role in the pathophysiology of Japanese schizophrenia, BP and MDD patients. However, it will be important to replicate and confirm these findings in other independent studies using large samples.
Several genetic studies have shown an association between the 5-HT1A receptor gene (HTR1A) and major depressive disorder (MDD); however, results have been rather inconsistent. Moreover, to our knowledge, no association study on HTR1A and MDD in the Japanese population has been reported. Therefore, to evaluate the association between HTR1A and MDD, we conducted a case-control study of Japanese population samples with two single-nucleotide polymorphisms (SNPs), including rs6295 (C-1019G) in HTR1A. In addition, we conducted a meta-analysis of rs6295, which has been examined in other papers. Using one functional SNP (rs6295) and one tagging SNP (rs878567) selected with the HapMap database, we conducted a genetic association analysis of case-control samples (331 patients with MDD and 804 controls) in the Japanese population. Seven population-based association studies, including this study, met our criteria for the meta-analysis of rs6295. We found an association between rs878567 and Japanese MDD patients in the allele-wise analysis, but the significance of this association did not remain after Bonferroni's correction. We also did not detect any association between HTR1A and MDD in the allele/ genotype-wise or haplotype-wise analysis. On the other hand, we detected an association between rs6295 and MDD in the metaanalysis (P(Z)¼0.0327). In an explorative analysis, rs6295 was associated with Asian MDD patients after correction for multiple testing (P(Z)¼0.0176), but not with Caucasian MDD patients (P(Z)¼0.138). Our results suggest that HTR1A may not have a role in the pathophysiology of Japanese MDD patients. On the other hand, according to the meta-analysis, HTR1A was associated with MDD patients, especially in the Asian population. Keywords: case-control study; functional SNP; major depressive disorder (MDD); meta-analysis; serotonin 1A receptor gene (HTR1A); tagging SNP INTRODUCTION Altered serotonergic neural transmission is hypothesized to be a susceptibility factor for major depressive disorder (MDD). The evidence for such an association is discussed in more detail in reviews. 1,2 Several genetic studies have shown an association between the serotonin 1A (5-HT1A) receptor gene (HTR1A) and MDD; however, results have been rather inconsistent. A recent meta-analysis showed no association between HTR1A and MDD. 3 However, two very recent studies reported that rs6295 (C-1019G) in the promoter region of HTR1A, which regulates HTR1A transcription, 4,5 was associated with MDD in the Chinese population. 6,7 Moreover, to our knowledge, no association study of HTR1A and MDD in the Japanese population has been reported. Therefore, we examined the association between HTR1A and MDD in the Japanese, using the recently recommended strategy of 'genebased' association analysis. 8 Moreover, we conducted an updated
Recent studies have shown that selective serotonin reuptake inhibitors (SSRIs) have circadian properties, suggesting that the antidepressive action of SSRIs may also be attributable to circadian mechanisms. Another study reported an association between clock gene (CLOCK) and improvements in insomnia symptoms from SSRIs treatment. Therefore, we examined the association between CLOCK and the efficacy of fluvoxamine treatment in 121 patients with Japanese major depressive disorder (MDD). The MDD patients in this study had scores of 12 or higher on the 17 items of the Structured Interview Guide for Hamilton Rating Scale for Depression (SIGH-D). We defined a therapeutic response as a decrease of more than a 50% in baseline SIGH-D within 8 weeks, and clinical remission as a SIGH-D score of less than seven at 8 weeks. We selected three tagging SNPs in CLOCK for the subsequent statistical association analysis. We detected a significant association between rs3736544, a synonymous polymorphism in exon 20, and the fluvoxamine therapeutic response in MDD in the allele/genotype-wise analyses. In addition, remission with fluvoxamine was also significantly associated with rs3736544. These associations remained significant after Bonferroni correction. Moreover, haplotype analysis findings supported these significant associations, which appeared to be due mainly to rs3736544, in the fluvoxamine therapeutic remission. Our results indicate that CLOCK genotype may be a predictor of fluvoxamine treatment response in Japanese MDD. However, our sample size was small, and a replication study using larger samples may be required for conclusive results.
Several recent investigations reported that the serotonin 2A receptor gene (HTR2A) was associated with selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder. There have also been two reported association analyses of HTR2A with SSRI response in Japanese MDD patients, but the results were rather inconsistent and both studies had the problem of small sample sizes. Therefore, we conducted a replication association study using a sample larger than those in the two original Japanese studies (265 MDD patients), and found that four SNPs, two functional SNPs (-A1438G: rs6311 and T102C: rs6313) and two SNPs (rs7997012 and rs1928040) in HTR2A, were associated with the therapeutic response to SSRIs. HTR2A was associated with the therapeutic response SSRIs in Japanese MDD patients in a haplotype-wise analysis (P(all markers) = 0.0136), and a significant association between rs1928040 in HTR2A and SSRI response was detected in MDD (P(allele-wise analysis) = 0.0252). However, this significance disappeared after Bonferroni correction (P(allele-wise analysis) = 0.101). In conclusion, we suggest that HTR2A may play an important role in the pathophysiology of the therapeutic response to SSRIs in Japanese MDD patients. However, it will be important to replicate and confirm these findings in other independent studies using large samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.