Endometrial stromal cells differentiate into decidual cells through the process of decidualization. This differentiation is critical for embryo implantation and the successful establishment of pregnancy. Recent epidemiological studies have suggested that thyroid hormone is important in the endometrium during implantation, and it is commonly believed that thyroid hormone is essential for proper development, differentiation, growth, and metabolism. This study aimed to investigate the impact of thyroid hormone on decidualization in human endometrial stromal cells (hESCs) and define its physiological roles in vitro by gene targeting. To identify the expression patterns of thyroid hormone, we performed gene expression profiling of hESCs during decidualization after treating them with the thyroid hormone levothyroxine (LT4). A major increase in decidual response was observed after combined treatment with ovarian steroid hormones and thyroid hormone. Moreover, LT4 treatment also affected the regulation of many transcription factors important for decidualization. We found that type 3 deiodinase, which is particularly important in fetal and placental tissues, was upregulated during decidualization in the presence of thyroid hormone. Further, it was observed that progesterone receptor, an ovarian steroid hormone receptor, was involved in thyroid hormone–induced decidualization. In the absence of thyroid hormone receptor (TR), due to the simultaneous silencing of TRα and TRβ, thyroid hormone expression was unchanged during decidualization. In summary, we demonstrated that thyroid hormone is essential for decidualization in the endometrium. This is the first in vitro study to find impaired decidualization as a possible cause of infertility in subclinical hypothyroidism (SCH) patients.
Cigarette smoking (CS) is a major contributing factor in the development of a large number of fatal and debilitating disorders, including degenerative diseases and cancers. Smoking and passive smoking also affect the establishment and maintenance of pregnancy. However, to the best of our knowledge, the effects of smoking on the human endometrium remain poorly understood. In this study, we investigated the regulatory mechanism underlying CS-induced hypoxia-inducible factor (HIF)-1α activation using primary human endometrial stromal cells and an immortalized cell line (KC02-44D). We found that the CS extract (CSE) increased reactive oxygen species levels and stimulated HIF-1α protein stabilization in endometrial stromal cells, and that CS-induced HIF-1α-dependent gene expression under non-hypoxic conditions in a concentration- and time-dependent manner. Additionally, we revealed the upregulated expression of a hypoxia-induced gene set following the CSE treatment, even under normoxic conditions. These results indicated that HIF-1α might play an important role in CS-exposure-induced cellular stress, inflammation, and endometrial remodeling.
Background Ovarian function is closely related to the degree of vascular network development surrounding the ovary. Maternal aging‐related construction defects in this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient supply, leading to physiological changes in the ovaries and oocytes. The anti‐aging gene Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic environments and mitochondrial biogenesis. Methods The present study is a literature review focusing on investigations involving the changes in SIRT1 and mitochondrial expression during hypoxia and the cytoprotective effects of the SIRT1 activator, resveratrol. Main findings Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol can reverse the hypoxia‐induced decrease in mitochondrial and SIRT1 activity. Resveratrol suppresses the production of hypoxia‐inducible factor‐1α and vascular endothelial growth factor proteins. Conclusion Resveratrol exhibits protective activity against hypoxic stress and may prevent hypoxia‐ or aging‐related mitochondrial dysfunction. Resveratrol treatment may be a potential option for infertility therapy.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.