Summary Thirty-five hepatocellular carcinomas (HCCs) associated with hepatitis C virus (HCV) were analysed by comparative genomic hybridization (CGH), to screen for changes in copy-number of DNA sequences. Chromosomal losses were noted in 1p34-36 (37%), 4q12-21 (48%), 5q13-21 (35%), 6q13-16 (23%), 8p21-23 (28%), 13q (20%), 16q (33%) and 17p13 (37%). Gains were noted in 1q (46%), 6p (20%), 8q21-24 (31%) and 17q (43%). High level gains indicative of gene amplifications were found in 7q31 (3%), 11q13 (3%), 14q12 (6%) and 17q12 (3%); amplification at 14q12 may be characteristic for HCCs. No significant difference in chromosomal aberrations was noted between carcinomas associated with HCV-infection in our study and those reported earlier in HCCs infected with hepatitis B virus (HBV), indicating that both HBV-and HCV-related carcinomas may progress through a similar cascade of molecular events.
The bacterial flagellum is a motility organelle consisting of a long helical filament as a propeller and a rotary motor that drives rapid filament rotation to produce thrust. Salmonella enterica serovar Typhimurium has two genes of flagellin, fljB and fliC, for flagellar filament formation and autonomously switches their expression at a frequency of 10−3–10−4 per cell per generation. We report here differences in their structures and motility functions under high-viscosity conditions. A Salmonella strain expressing FljB showed a higher motility than one expressing FliC under high viscosity. To examine the reasons for this motility difference, we carried out structural analyses of the FljB filament by electron cryomicroscopy and found that the structure was nearly identical to that of the FliC filament except for the position and orientation of the outermost domain D3 of flagellin. The density of domain D3 was much lower in FljB than FliC, suggesting that domain D3 of FljB is more flexible and mobile than that of FliC. These differences suggest that domain D3 plays an important role not only in changing antigenicity of the filament but also in optimizing motility function of the filament as a propeller under different conditions.
The basal body of the bacterial flagellum is a rotary motor that consists of several rings (C, MS and LP) and a rod. The LP ring acts as a bushing supporting the distal rod for its rapid and stable rotation without much friction. Here, we use electron cryomicroscopy to describe the LP ring structure around the rod, at 3.5 Å resolution, from Salmonella Typhimurium. The structure shows 26-fold rotational symmetry and intricate intersubunit interactions of each subunit with up to six partners, which explains the structural stability. The inner surface is charged both positively and negatively. Positive charges on the P ring (the part of the LP ring that is embedded within the peptidoglycan layer) presumably play important roles in its initial assembly around the rod with a negatively charged surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.