When we evaluated the age-associated changes in autoimmune exocrinopathy in a NFS/sld murine model for primary Sjögren's syndrome (SS), severe destructive autoimmune lesions developed in the salivary and lacrimal glands in the aged mice, compared with those observed in the younger model. We detected a decreased secretion of saliva and tear flow in the aged group. A significant increase of TUNEL(+)-apoptotic epithelial duct cells in the salivary glands was detected in the aged SS animal model. A higher proportion of mouse salivary gland cells bearing Fas was found in the aged group, whereas no significant changes were seen on tissue-infiltrating CD4(+) T cells bearing FasL in the salivary glands from young and aged mice. We detected an increased cleavage product of organ-specific autoantigen, 120-kd alpha-fodrin, in the aged salivary gland tissues on immunoblotting, and an increase in serum autoantibody production against 120-kd alpha-fodrin by enzyme-linked immunosorbent assay. An increase in the proliferative response of splenic T cells against organ-specific autoantigen was observed, whereas nonspecific concanavalin A responsiveness was decreased in the aged mice. In addition, a decrease in Fas expression was found on splenic CD4(+) T cells in the aged mice, and anti-Fas mAb-stimulated apoptosis was down-regulated on CD4(+) T cells. These results indicate that age-associated dysregulation of CD4(+) T cells may play a crucial role on acceleration of organ-specific autoimmune lesions in a murine model for primary SS through Fas-mediated apoptosis.
Purpose: Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family and plays a pivotal role in tumor progression in ovarian cancer. We developed an anti-HB-EGF monoclonal antibody (mAb) and investigated its antitumor activities in vitro and in vivo to evaluate its potential as a therapeutic antibody against ovarian cancer.Experimental Design: We prepared mAbs from HB-EGF null mice immunized with recombinant human soluble HB-EGF and evaluated their binding and neutralizing activity against HB-EGF. Next, we generated a mouse-human chimeric antibody and examined its in vitro and in vivo antitumor activities.Results: Two murine anti-HB-EGF mAbs were developed, and one of them, KM3566, was revealed to have a high binding reactivity for membrane-anchored HB-EGF (pro-HB-EGF) expressed on the cell surface, as well as neutralizing activity against growth promoting activity of soluble HB-EGF. The mouse-human chimeric counterpart for KM3566 (cKM3566) induced dose-dependent antibody-dependent cellular cytotoxicity (ADCC) against cancer cells expressing HB-EGF in vitro, and significantly inhibited tumor growth in severe combined immunodeficient mice inoculated with MCAS or ES-2 human ovarian cancer cells.Conclusions: A novel anti-HB-EGF chimeric antibody, cKM3566, with two antitumor mechanisms, neutralization and ADCC, exhibits potent in vivo antitumor activity. These results indicate that cKM3566 is a promising antiovarian cancer therapeutic antibody. Clin Cancer Res; 17(21); 6733-41. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.