A comprehensive screening method for 311 organic compounds with a wide range of physicochemical properties (log Pow -2.2-8.53) in water samples was developed by combining solid-phase extraction with liquid chromatography-high-resolution time-of-flight mass spectrometry. Method optimization using 128 pesticides revealed that tandem extraction with styrene-divinylbenzene polymer and activated carbon solid-phase extraction cartridges at pH 7.0 was optimal. The developed screening method was able to extract 190 model compounds with average recovery of 80.8% and average relative standard deviations (RSD) of 13.5% from spiked reagent water at 0.20 μg L, and 87.1% recovery and 10.8% RSD at 0.05 μg L. Spike-recovery testing (0.20 μg L) using real sewage treatment plant effluents resulted in an average recovery and average RSD of 190 model compounds of 77.4 and 13.1%, respectively. The method was applied to the influent and effluent of five sewage treatment plants in Kitakyushu, Japan, with 29 out of 311 analytes being observed at least once. The results showed that this method can screen for a large number of chemicals with a wide range of physicochemical properties quickly and at low operational cost, something that is difficult to achieve using conventional analytical methods. This method will find utility in target screening of hazardous chemicals with a high risk in environmental waters, and for confirming the safety of water after environmental incidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.