Advances in understanding the role of vascular endothelial growth factor (VEGF) in normal physiology are giving insight into the basis of adverse effects attributed to the use of VEGF inhibitors in clinical oncology. These effects are typically downstream consequences of suppression of cellular signalling pathways important in the regulation and maintenance of the microvasculature. Downregulation of these pathways in normal organs can lead to vascular disturbances and even regression of blood vessels, which could be intensified by concurrent pathological conditions. These changes are generally manageable and pose less risk than the tumours being treated, but they highlight the properties shared by tumour vessels and the vasculature of normal organs.
Unlike during development, blood vessels in the adult are generally thought not to require VEGF for normal function. However, VEGF is a survival factor for many tumor vessels, and there are clues that some normal blood vessels may also depend on VEGF. In this study, we sought to identify which, if any, vascular beds in adult mice depend on VEGF for survival. Mice were treated with a small-molecule VEGF receptor (VEGFR) tyrosine kinase inhibitor or soluble VEGFRs for 1-3 wk. Blood vessels were assessed using immunohistochemistry or scanning or transmission electron microscopy. In a study of 17 normal organs after VEGF inhibition, we found significant capillary regression in pancreatic islets, thyroid, adrenal cortex, pituitary, choroid plexus, small-intestinal villi, and epididymal adipose tissue. The amount of regression was dose dependent and varied from organ to organ, with a maximum of 68% in thyroid, but was less in normal organs than in tumors in RIP-Tag2-transgenic mice or in Lewis lung carcinoma. VEGF-dependent capillaries were fenestrated, expressed high levels of both VEGFR-2 and VEGFR-3, and had normal pericyte coverage. Surviving capillaries in affected organs had fewer fenestrations and less VEGFR expression. All mice appeared healthy, but distinct physiological changes, including more efficient blood glucose handling, accompanied some regimens of VEGF inhibition. Strikingly, most capillaries in the thyroid grew back within 2 wk after cessation of treatment for 1 wk. Our findings of VEGF dependency of normal fenestrated capillaries and rapid regrowth after regression demonstrate the plasticity of the adult microvasculature.
More effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-naïve prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC. Cancer Res; 70(4); 1606-15. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.