Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute lung injury, which involves neutrophilic inflammation and pulmonary cell death. Reactive oxygen species (ROS) play important roles in ARDS development. New compounds for inhibiting the onset and progression of ARDS are required. Carnosine (β-alanyl-L-histidine) is a small di-peptide with numerous activities, including antioxidant effects, metal chelation, proton buffering capacity and the inhibition of protein carbonylation and glycoxidation. We have examined the preventive effects of carnosine on tissue injury, oedema and inflammation in a murine model for ARDS. Oral administration of carnosine suppressed lipopolysaccharide (LPS)-induced vascular permeability, tissue injury and inflammation in the lung. In vivo imaging analysis revealed that LPS administration increased the level of ROS and that this increase was inhibited by carnosine administration. Carnosine also suppressed LPS-induced neutrophilic inflammation (evaluated by activation of myeloperoxidase in the lung and increased extracellular DNA in bronchoalveolar lavage fluid). Furthermore, carnosine administration suppressed the LPS-induced endoplasmic reticulum stress response in vivo. These results suggest that the oral administration of carnosine suppresses LPS-induced lung injury via carnosine’s ROS-reducing activity. Therefore, carnosine may be beneficial for suppressing the onset and progression of ARDS.
Idiopathic pulmonary fibrosis (IPF) involves alveolar epithelial injury and abnormal collagen production caused by activated fibroblasts; transforming growth factor (TGF)-β1 is implicated in this activation. In this study, we screened for chemicals capable of inhibiting TGF-β1-induced collagen production in cultured fibroblasts from medicines already in clinical use. We selected felodipine based on its extent of collagen production inhibition, clinical safety profile, and other pharmacological activity. Felodipine is a dihydropyridine Ca2+ channel blocker that has been used clinically to treat patients with high blood pressure. Felodipine suppressed collagen production within LL29 cells in the presence of TGF-β1, but not in its absence. Intratracheal administration of felodipine prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction. Felodipine also improved pulmonary fibrosis, as well as lung and respiratory function when administered after fibrosis development. Furthermore, administration of felodipine suppressed a bleomycin-induced increase in activated fibroblasts in the lung. We also found other dihydropyridine Ca2+ channel blockers (nifedipine and benidipine) inhibited collagen production in vitro and partially prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction in vivo. We propose that these Ca2+ channel blockers may be therapeutically beneficial for IPF patients.
Idiopathic pulmonary fibrosis is thought to involve lung injury caused by reactive oxygen species (ROS), which in turn is followed by abnormal fibrosis. A transforming growth factor (TGF)-b1-induced increase in myofibroblast number plays an important role in this abnormal fibrosis. We recently found that mepenzolate bromide (mepenzolate), which has been used clinically to treat gastrointestinal disorders, has ROS-reducing properties. In the present study, we examined the effect of mepenzolate on bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. The severity of pulmonary fibrosis was assessed by histopathologic evaluation and determination of hydroxyproline levels. Lung mechanics (elastance) and respiratory function [forced vital capacity (FVC)] were assessed using a computer-controlled ventilator. Respiratory function was also evaluated by monitoring percutaneous arterial oxygen saturation (SpO 2 ). Intratracheal administration of mepenzolate prior to bleomycin treatment reduced the extent of pulmonary fibrosis and changes in lung mechanics and led to a significant recovery of both FVC and SpO 2 compared with control. Furthermore, mepenzolate produced a therapeutic effect even when it was administered after the development of fibrosis. Administration of mepenzolate also prevented bleomycin-induced pulmonary cell death and inflammatory responses and increased myofibroblast number. Mepenzolate also decreased NADPH oxidase activity and active TGF-b1 level or increased glutathione S-transferase (GST) activity in the presence of bleomycin treatment. These results show that the intratracheal administration of mepenzolate reduced bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. These effects may be due to this drug's inhibitory effect on NADPH oxidase and TGF-b1 activities and its stimulatory effect on GST.
Emicizumab prophylaxis significantly reduces bleeding episodes in patients with hemophilia A (PwHA). There is little information on coagulant potentials in emicizumab-treated PwHA with infection, however. We encountered an emicizumab-treated PwHA with inhibitor, complicated with Epstein–Barr virus-associated infectious mononucleosis (IM) in phase 1/2 study (ACE001JP/ACE002JP). Although it was a typical clinical course of IM, activated partial thromboplastin time was mildly prolonged but rotational thromboelastometry revealed severely impaired coagulant potential. The blood concentration of emicizumab decreased moderately in the low concentration range, resulting in an increased risk of bleeding and possibly leading to severe ileocecal bleeds requiring coil embolization. The blood concentrations of factors IX/X little decreased and antiemicizumab antibodies did not develop, however. After the influence by IM resolved, his coagulant potentials gradually recovered with the recovery of emicizumab concentration, and parameters by global coagulation assays improved. An IM case for emicizumab-treated PwHA may need to monitor using global coagulation assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.