Noradrenaline (NA) from the locus coeruleus and GABA from intracortical nonpyramidal cells exert strong influences on cortical activity. To assess possible interaction between the two, the effects of noradrenergic agonists on spontaneous GABAergic IPSCs as well as on the activity of identified GABAergic cell types were investigated by in vitro whole-cell recordings from the frontal cortex of 18-to 22-d-old rats. NA (3-50 M) and an ␣-adrenergic agonist, 6-fluoronorepinephrine (FNE; 30-50 M), induced an increase of IPSC frequency in pyramidal cells, but a -adrenergic agonist did not. This increase was reduced by tetrodotoxin, bicuculline, and ␣-adrenergic antagonists, suggesting that GABAergic cells are excited via ␣-adrenoceptors. Fast-spiking or late-spiking cells were depolarized by application of NA or FNE, but none demonstrated spike firings. The former morphologically included common multipolar cells with extended axonal arborizations as well as chandelier cells, and the latter neurogliaform cells. Most somatostatinimmunoreactive regular or burst-spiking cells, including Martinotti cells and wide arbor cells, were depolarized and accompanied by spike firing. In a few cases this was preceded by hyperpolarization. Cholecystokinin-immunoreactive regular or burst-spiking nonpyramidal cells, including large basket cells, were affected heterogeneously: depolarization, hyperpolarization followed by depolarization, or hyperpolarization resulted. The findings suggest that, similar to the effects of acetylcholine, the excitability of cortical GABAergic cell types is differentially regulated by NA and that NA actions are similar to cholinergic ones in some GABAergic cell types but not in others.
Dopamine-dependent synaptic plasticity is a candidate mechanism for reinforcement learning. A silent eligibility trace - initiated by synaptic activity and transformed into synaptic strengthening by later action of dopamine - has been hypothesized to explain the retroactive effect of dopamine in reinforcing past behaviour. We tested this hypothesis by measuring time-dependent modulation of synaptic plasticity by dopamine in adult mouse striatum, using whole-cell recordings. Presynaptic activity followed by postsynaptic action potentials (pre-post) caused spike-timing-dependent long-term depression in D1-expressing neurons, but not in D2 neurons, and not if postsynaptic activity followed presynaptic activity. Subsequent experiments focused on D1 neurons. Applying a dopamine D1 receptor agonist during induction of pre-post plasticity caused long-term potentiation. This long-term potentiation was hidden by long-term depression occurring concurrently and was unmasked when long-term depression blocked an L-type calcium channel antagonist. Long-term potentiation was blocked by a Ca -permeable AMPA receptor antagonist but not by an NMDA antagonist or an L-type calcium channel antagonist. Pre-post stimulation caused transient elevation of rectification - a marker for expression of Ca -permeable AMPA receptors - for 2-4-s after stimulation. To test for an eligibility trace, dopamine was uncaged at specific time points before and after pre- and postsynaptic conjunction of activity. Dopamine caused potentiation selectively at synapses that were active 2-s before dopamine release, but not at earlier or later times. Our results provide direct evidence for a silent eligibility trace in the synapses of striatal neurons. This dopamine-timing-dependent plasticity may play a central role in reinforcement learning.
The selective localization of adenosine A2A receptors to the striatopallidal system suggested a new therapeutic approach to the management of Parkinson's disease (PD). The results of behavioral studies using A2A receptor-specific agents in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys highlight the therapeutic potential of A2A antagonists as a novel treatment for PD. However, little is known about the role of A2A receptors in basal ganglia function or their pathophysiologic role in PD. Recently, the authors found that presynaptic A2A receptors modulate GABAergic synaptic transmission in the striatum and globus pallidus (GP), suggesting an A2A receptor-mediated dual modulation of the striatopallidal system. Striatal A2A receptors may increase the excitability of medium spiny neurons (MSNs) by modulating an intrastriatal GABAergic network. In addition, pallidal modulation occurs at striatopallidal MSN terminals located at the GP, enhancing GABA release onto GP projection neurons and directly suppressing their activity. Blockade of these modulatory functions by A2A antagonists could counteract excessive striatopallidal neuronal activity provoked by striatal dopamine depletion in patients with PD, leading to a reversal of parkinsonian motor deficits.
The striatum is the principal input nucleus of the basal ganglia, receiving glutamatergic afferents from the cerebral cortex. There is much interest in mechanisms of synaptic plasticity in the corticostriatal synapses. We used two-photon microscopy and whole-cell recording to measure changes in intracellular calcium concentration (
We demonstrated an adenosine A2a receptor-mediated disinhibition of medium spiny projection neurons using intracellular recording and the whole-cell patch-clamp recording applied to these cells, visually identified in thin rat striatal slices. The A2a receptor agonist 2-[p-(2-carboxyethyl) phenylethylamino]-5'-N- ethylcarboxamido adenosine (CGS-21680; 0.3-10 microM) suppressed GABAergic synaptic transmission onto these cells in a manner inhibited by the A2a receptor-selective antagonist (E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (0.1-1.0 microM). The A1 receptor antagonists had no effect on the CGS-21680-induced suppression. Analysis of spontaneous miniature inhibitory synaptic currents indicated that suppression of intrastriatal GABAergic synaptic transmission was attributable to presynaptic, but not postsynaptic, A2a receptors. Therefore, the A2a receptor may regulate striatal output activity by relieving GABA-mediated inhibition of the medium spiny projection neurons, which explains the ability of purinergic agents to affect motor control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.