Maritime adaptation was one of the essential factors that enabled modern humans to disperse all over the world. However, geographic distribution of early maritime technology during the Late Pleistocene remains unclear. At this time, the Indonesian Archipelago and eastern New Guinea stand as the sole, well-recognized area for secure Pleistocene evidence of repeated ocean crossings and advanced fishing technology. The incomplete archeological records also make it difficult to know whether modern humans could sustain their life on a resource-poor, small oceanic island for extended periods with Paleolithic technology. We here report evidence from a limestone cave site on Okinawa Island, Japan, of successive occupation that extends back to 35,000−30,000 y ago. Well-stratified strata at the Sakitari Cave site yielded a rich assemblage of seashell artifacts, including formally shaped tools, beads, and the world’s oldest fishhooks. These are accompanied by seasonally exploited food residue. The persistent occupation on this relatively small, geographically isolated island, as well as the appearance of Paleolithic sites on nearby islands by 30,000 y ago, suggest wider distribution of successful maritime adaptations than previously recognized, spanning the lower to midlatitude areas in the western Pacific coastal region.
In the East Asian monsoon area, stalagmites generally record lower and higher oxygen isotope (δ18O) levels during warm humid interglacial and cold dry glacial periods, respectively. Here, we report unusually low stalagmite δ18O from the last glacial period (ca. 32.2–22.3 ka) in Fukugaguchi Cave, Niigata Prefecture, Japan, where a major moisture source is the East Asian winter monsoon (EAWM) that carries vapor from the warm surface of the Japan Sea. The δ18O profile of this stalagmite may imply millennial-scale changes, and high δ18O intervals that are related to Dansgaard–Oeschger (D–O) interstadials. More importantly, the stalagmite exhibits low overall δ18O values; the mean δ18O (− 8.87‰) is distinctly lower than the mid-Holocene mean of another stalagmite from the same cave (4.2–8.2 ka, − 7.64‰). An interpretation assuming a more intense EAWM and greater vapor transportation during the last glacial period, compared with the mid-Holocene, contradicts the limited inflow of the Tsushima Warm Current into the Japan Sea because of lowered sea level. Additionally, our model calculation using δ18O data from meteoric water indicated that the amount effect of winter meteoric water was insignificant (1.2‰/1000 mm). Low stalagmite δ18O for the last glacial period in Fukugaguchi Cave most likely resulted from 18O-depleted surface water, which developed in the isolated Japan Sea. The estimated amplitude of the δ18O decrease in surface water was ~ 3‰ at most, consistent with the abnormally low values for foraminifera (by ~ 2.5‰) in sediment during the last glacial period, shown by samples collected from the Japan Sea. This is the first terrestrial evidence of 18O depletion in Japan Sea surface water during the last glacial period.
The Holocene stalagmite FG01 collected at the Fukugaguchi Cave in Itoigawa, central Japan provides a unique high-resolution record of the East Asian winter monsoon. Because of the climate conditions on the Japan Sea side of the Japanese islands, the volume of precipitation during the winter is strongly reflected in the stalagmite δ 18 O signal. Examination of the carbon isotopes and the Mg/Ca ratio of FG01 provided additional information on the Holocene climate in Itoigawa, which is characterized by two different modes separated at 6.4 ka. Dripwater composition and the correlation between the δ 13 C and Mg/Ca data of FG01 indicate the importance of prior calcite precipitation (PCP), a process that selectively eliminated 12 C and calcium ions from infiltrating water from CO 2 degassing and calcite precipitation. In an earlier period (10.0-6.4 ka), an increase in soil pCO 2 associated with warming and wetting climate trends was a critical factor that enhanced PCP, and resulted in an increasing trend in the Mg/Ca and δ 13 C data and a negative correlation between the δ 13 C and δ 18 O profiles. A distinct peak in the δ 13 C age profile at 6.8 ka could be a response to an increase of approximately 10% in C4 plants in the recharge area. At 6.4 ka, the climate mode changed to another, and correlation between δ 18 O and δ 13 C became positive. In addition, a millennial-scale variation in δ 18 O and pulsed changes in δ 13 C and Mg/Ca became distinct. Assuming that δ 18 O and PCP were controlled by moisture in the later period, the volume of precipitation was high during 6.0-5.2, 4.4-4.0, and 3.0-2.0 ka. In contrast, the driest interval in Itoigawa was during 0.2-0.4 ka, and broadly corresponds to the Little Ice Age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.