Abstract. In natural biological communities, species interact with many other species. Multiple species interactions can lead to indirect ecological effects that have important fitness consequences and can cause nonadditive patterns of natural selection. Given that indirect ecological effects are common in nature, nonadditive selection may also be quite common. As a result, quantifying nonadditive selection resulting from indirect ecological effects may be critical for understanding adaptation in natural communities composed of many interacting species. We describe how to quantify the relative strength of nonadditive selection resulting from indirect ecological effects compared to the strength of pairwise selection. We develop a clear method for testing for nonadditive selection caused by indirect ecological effects and consider how it might affect adaptation in multispecies communities. We use two case studies to illustrate how our method can be applied to empirical data sets. Our results suggest that nonadditive selection caused by indirect ecological effects may be common in nature. Our hope is that trait-based approaches, combined with multifactorial experiments, will result in more estimates of nonadditive selection that reveal the relative importance of indirect ecological effects for evolution in a community context.
The biotic resistance hypothesis is a dominant paradigm for why some introduced species fail to become invasive in novel environments. However, predictions of this hypothesis require further empirical field tests. Here, we focus on evaluating two biotic factors known to severely limit plants, interspecific competition and insect herbivory, as mechanisms of biotic resistance. We experimentally evaluated the independent and combined effects of three levels of competition by tallgrass prairie vegetation and two levels of herbivory by native insects on seedling regeneration, size, and subsequent flowering of the Eurasian Cirsium vulgare, a known invasive species elsewhere, and compared its responses to those of the ecologically similar and co-occurring native congener C. altissimum. Seedling emergence of C. vulgare was greater than that of C. altissimum, and that emergence was reduced by the highest level of interspecific competition. Insect leaf herbivory was also greater on C. vulgare than on C. altissimum at all levels of competition. Herbivory on seedlings dramatically decreased the proportion of C. vulgare producing flower heads at all competition levels, but especially at the high competition level. Competition and herbivory interacted to significantly decrease plant survival and biomass, especially for C. vulgare. Thus, both competition and herbivory limited regeneration of both thistles, but their effects on seedling emergence, survival, size and subsequent reproduction were greater for C. vulgare than for C. altissimum. These results help explain the unexpectedly low abundance recorded for C. vulgare in western tallgrass prairie, and also provide strong support for the biotic resistance hypothesis.
Tolerance, or the capacity of a genotype to survive and reproduce following herbivore damage, varies widely across the plant kingdom. One proximate cause of this variation is resource availability, which can influence tolerance through mechanisms such as growth rate and photosynthesis. We examined the effect of high and low soil nutrient levels on the relationship between tolerance and two of its underlying mechanisms, biomass regrowth and photosynthetic upregulation, among genotypes of the Mediterranean annual grass Avena barbata. Although defoliated plants did not reach the same biomass as controls, biomass regrowth was higher at high nutrients. However, increased seed abortion at high nutrients caused tolerance to be the same in both nutrient treatments. Increased seed abortion also uncoupled biomass regrowth from tolerance at high nutrients. We found no evidence for photosynthetic upregulation in defoliated compared to control plants in either nutrient treatment. However, tolerance was positively correlated with predefoliation photosynthetic efficiency at high nutrients. Thus, constitutive photosynthetic efficiency may be a better predictor of tolerance than photosynthetic responses following herbivory in A. barbata. More generally, our results highlight the possibility that the mechanisms of tolerance can differ across resource environments even if tolerance is the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.