Freshwater planarians have a simple and evolutionarily primitive brain structure. Here, we identified the Djsnap-25 gene encoding a homolog of the evolutionarily conserved synaptic protein SNAP-25 from the planarian Dugesia japonica and assessed its role in brain function. Djsnap-25 was expressed widely in the nervous system. To investigate the specific role of Djsnap-25 in the brain, we developed a unique technique of RNA interference (RNAi), regeneration-dependent conditional gene knockdown (Readyknock), exploiting the high regenerative capacity of planarians, and succeeded in selectively eliminating the DjSNAP-25 activity in the head region while leaving the DjSNAP-25 activity in the trunk region intact. These knockdown animals showed no effect on brain morphology or on undirected movement of the trunk itself. Light-avoidance behavior or negative phototaxis was used to quantitatively analyze brain function in the knockdown animals. The results suggested that the DjSNAP-25 activity within the head region is required for two independent sensory-processing pathways that regulate locomotive activity and directional movement downstream of distinct primary sensory outputs coming from the head margin and the eyes, respectively, during negative phototaxis. Our approach demonstrates that planarians are a powerful model organism to study the molecular basis of the brain as an information-processing center.
The migration of Caenorhabditis elegans gonadal distal tip cells (DTCs) offers an excellent model to study the migration of epithelial tubes in organogenesis. mig-18 mutants cause meandering or wandering migration of DTCs during gonad formation, which is very similar to that observed in animals with mutations in mig-17, which encodes a secreted metalloprotease of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family. MIG-18 is a novel secreted protein that is conserved only among nematode species. The mig-17(null) and mig-18 double mutants exhibited phenotypes similar to those in mig-17(null) single mutants. In addition, the mutations in fbl-1/fibulin-1 and let-2/collagen IV that suppress mig-17 mutations also suppressed the mig-18 mutation, suggesting that mig-18 and mig-17 function in a common genetic pathway. The Venus-MIG-18 fusion protein was secreted from muscle cells and localized to the gonadal basement membrane, a tissue distribution reminiscent of that observed for MIG-17. Overexpression of MIG-18 in mig-17 mutants and vice versa partially rescued the relevant DTC migration defects, suggesting that MIG-18 and MIG-17 act cooperatively rather than sequentially. We propose that MIG-18 may be a cofactor of MIG-17/ADAMTS that functions in the regulation of the gonadal basement membrane to achieve proper direction of DTC migration during gonadogenesis.T HE ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of the secreted zinc metalloproteases has important roles in development. Nineteen ADAMTS genes have been identified in the human genome, and mutations in many result in hereditary diseases that are related to disorders of the extracellular matrix (Apte 2009). The functions of ADAMTS-5, -9, and -20 are required for digit formation, and ADAMTS-9 and -20 are needed for closure of the palate in mice (McCulloch et al. 2009;Enomoto et al. 2010). ADAMTS-5 and -15 act in myoblast fusion (Stupka et al. 2013). However, the precise roles of ADAMTS proteases in development still remain elusive.Among five ADAMTS genes in Caenorhabditis elegans, gon-1 and mig-17 play essential roles in the development of the somatic gonad (Blelloch and Kimble 1999;Nishiwaki et al. 2000). GON-1 is required for active migration of gonadal distal tip cells (DTCs), whereas MIG-17 acts in the directional control of DTC migration. Genetic suppressor analyses of mig-17 mutants identified dominant gain-of-function (gf) mutations in two genes that encode basement membrane proteins, FBL-1C/ fibulin-1C and LET-2/a2 subunit of collagen IV (Kubota et al. 2004(Kubota et al. , 2008. The suppressor fbl-1(gf) mutations result in substitutions of evolutionarily conserved amino acids within the second EGF-like motif of FBL-1C. FBL-1C is recruited to the gonadal basement membrane by MIG-17 activity, where it is likely to be required for directional control of DTC migration (Kubota et al. 2004). The suppression by fbl-1(gf) mutations depends on NID-1/nidogen, a basement membrane protein et al. ...
Many adult tissues are composed of differentiated cells and stem cells, each working in a coordinated manner to maintain tissue homeostasis during physiological cell turnover. Old differentiated cells are believed to typically die by apoptosis. Here, we discovered a previously uncharacterized, new phenomenon, which we name erebosis based on the ancient Greek word erebos (“complete darkness”), in the gut enterocytes of adult Drosophila. Cells that undergo erebosis lose cytoskeleton, cell adhesion, organelles and fluorescent proteins, but accumulate Angiotensin-converting enzyme (Ance). Their nuclei become flat and occasionally difficult to detect. Erebotic cells do not have characteristic features of apoptosis, necrosis, or autophagic cell death. Inhibition of apoptosis prevents neither the gut cell turnover nor erebosis. We hypothesize that erebosis is a cell death mechanism for the enterocyte flux to mediate tissue homeostasis in the gut.
Oncogenes often promote cell death as well as proliferation. How oncogenes drive these diametrically opposed phenomena remains to be solved. A key question is whether cell death occurs as a response to aberrant proliferation signals or through a proliferation-independent mechanism. Here, we reveal that Src, the first identified oncogene, simultaneously drives cell proliferation and death in an obligatorily coupled manner through parallel MAPK pathways. The two MAPK pathways diverge from a lynchpin protein Slpr. A MAPK p38 drives proliferation whereas another MAPK JNK drives apoptosis independently of proliferation signals. Src-p38-induced proliferation is regulated by methionine-mediated Tor signaling. Reduction of dietary methionine uncouples the obligatory coupling of cell proliferation and death, suppressing tumorigenesis and tumor-induced lethality. Our findings provide an insight into how cells evolved to have a fail-safe mechanism that thwarts tumorigenesis by the oncogene Src. We also exemplify a diet-based approach to circumvent oncogenesis by exploiting the fail-safe mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.