BackgroundMicroglia and macrophages (MG/MΦ) have a diverse range of functions depending on unique cytokine stimuli, and contribute to neural cell death, repair, and remodeling during central nervous system diseases. While IL-1 has been shown to exacerbate inflammation, it has also been recognized to enhance neuroregeneration. We determined the activating phenotype of MG/MΦ and the impact of IL-1 in an in vivo spinal cord injury (SCI) model of IL-1 knock-out (KO) mice. Moreover, we demonstrated the contribution of IL-1 to both the classical and alternative activation of MG in vitro using an adult MG primary culture.MethodsSCI was induced by transection of the spinal cord between the T9 and T10 vertebra in wild-type and IL-1 KO mice. Locomotor activity was monitored and lesion size was determined for 14 days. TNFα and Ym1 levels were monitored to determine the MG/MΦ activating phenotype. Primary cultures of MG were produced from adult mice, and were exposed to IFNγ or IL-4 with and without IL-1β. Moreover, cultures were exposed to IL-4 and/or IL-13 in the presence and absence of IL-1β.ResultsThe locomotor activity and lesion area of IL-1 KO mice improved significantly after SCI compared with wild-type mice. TNFα production was significantly suppressed in IL-1 KO mice. Also, Ym1, an alternative activating MG/MΦ marker, did not increase in IL-1 KO mice, suggesting that IL-1 contributes to both the classical and alternative activation of MG/MΦ. We treated primary MG cultures with IFNγ or IL-4 in the presence and absence of IL-1β. Increased nitric oxide and TNFα was present in the culture media and increased inducible NO synthase was detected in cell suspensions following co-treatment with IFNγ and IL-1β. Expression of the alternative activation markers Ym1 and arginase-1 was increased after exposure to IL-4 and further increased after co-treatment with IL-4 and IL-1β. The phenotype was not observed after exposure of cells to IL-13.ConclusionsWe demonstrate here in in vivo experiments that IL-1 suppressed SCI in a process mediated by the reduction of inflammatory responses. Moreover, we suggest that IL-1 participates in both the classical and alternative activation of MG in in vivo and in vitro systems.
Background: Adult human mesenchymal stem/stromal cells (hMSCs) from bone marrow have been reported to exhibit beneficial effects on spinal cord injury (SCI). A neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) is known to decrease neuronal cell death and inflammatory response after ischemia, SCI, and other neuronal disorders. Recently, we found that expression of the gene for mouse PACAP (Adcyap1) was greater in animals receiving hMSCs with neural injury such as ischemia. However, the association of PACAP with hMSCs to protect nerve cells against neural injuries is still unclear.
Traumatic brain injury (TBI) is a major cause of death and disability in young people. No effective therapy is available to ameliorate its damaging effects. Our aim was to investigate the optimal therapeutic time window of edaravone, a free radical scavenger which is currently used in Japan. We also determined the temporal profile of reactive oxygen species (ROS) production, oxidative stress, and neuronal death. Male C57Bl/6 mice were subjected to a controlled cortical impact (CCI). Edaravone (3.0 mg/kg), or vehicle, was administered intravenously at 0, 3, or 6 hours following CCI. The production of superoxide radicals (O2 ∙−) as a marker of ROS, of nitrotyrosine (NT) as an indicator of oxidative stress, and neuronal death were measured for 24 hours following CCI. Superoxide radical production was clearly evident 3 hours after CCI, with oxidative stress and neuronal cell death becoming apparent after 6 hours. Edaravone administration after CCI resulted in a significant reduction in the injury volume and oxidative stress, particularly at the 3-hour time point. Moreover, the greatest decrease in O2 ∙− levels was observed when edaravone was administered 3 hours following CCI. These findings suggest that edaravone could prove clinically useful to ameliorate the devastating effects of TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.