Summary B cells regulate immune responses by producing antigen-specific antibody1. However, specific B cell subsets can also negatively regulate immune responses, validating the existence of regulatory B cells2–4. Human and mouse regulatory B cells (B10 cells) with the ability to express the inhibitory cytokine IL-10 have been identified2–5. Although rare, B10 cells are potent negative regulators of antigen-specific inflammation and T cell-dependent autoimmune diseases in mice5–7. How B10 cell IL-10 production and regulation of antigen-specific immune responses are controlled in vivo without inducing systemic immunosuppression are unknown. Using a mouse model for multiple sclerosis, we show here that B10 cell maturation into functional IL-10-secreting effector cells that inhibit in vivo autoimmune disease requires IL-21 and CD40-dependent cognate interactions with T cells. Moreover, the ex vivo provision of CD40 and IL-21 receptor signals can drive B10 cell development and expansion by four-million-fold and generate B10 effector cells producing IL-10 that dramatically inhibit disease symptoms when transferred into mice with established autoimmune disease. Thereby, the ex vivo expansion and reinfusion of autologous B10 cells may provide a novel and effective in vivo treatment for severe autoimmune diseases that are resistant to current therapies.
Purpose Advanced-stage mycosis fungoides (MF; stage IIB to IV) and Sézary syndrome (SS) are aggressive lymphomas with a median survival of 1 to 5 years. Clinical management is stage based; however, there is wide range of outcome within stages. Published prognostic studies in MF/SS have been single-center trials. Because of the rarity of MF/SS, only a large collaboration would power a study to identify independent prognostic markers. Patients and Methods Literature review identified the following 10 candidate markers: stage, age, sex, cutaneous histologic features of folliculotropism, CD30 positivity, proliferation index, large-cell transformation, WBC/lymphocyte count, serum lactate dehydrogenase, and identical T-cell clone in blood and skin. Data were collected at specialist centers on patients diagnosed with advanced-stage MF/SS from 2007. Each parameter recorded at diagnosis was tested against overall survival (OS). Results Staging data on 1,275 patients with advanced MF/SS from 29 international sites were included for survival analysis. The median OS was 63 months, with 2- and 5-year survival rates of 77% and 52%, respectively. The median OS for patients with stage IIB disease was 68 months, but patients diagnosed with stage III disease had slightly improved survival compared with patients with stage IIB, although patients diagnosed with stage IV disease had significantly worse survival (48 months for stage IVA and 33 months for stage IVB). Of the 10 variables tested, four (stage IV, age > 60 years, large-cell transformation, and increased lactate dehydrogenase) were independent prognostic markers for a worse survival. Combining these four factors in a prognostic index model identified the following three risk groups across stages with significantly different 5-year survival rates: low risk (68%), intermediate risk (44%), and high risk (28%). Conclusion To our knowledge, this study includes the largest cohort of patients with advanced-stage MF/SS and identifies markers with independent prognostic value, which, used together in a prognostic index, may be useful to stratify advanced-stage patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.