Building a bottom-up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio-temporal patterns with dissipative structures. However, it remains difficult to build such self-organized working objects via artificial techniques. Herein, we show the first example of a square-wave limit-cycle self-oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue-light irradiation. Mechanical self-oscillation is established by successively alternating photoisomerization processes and multi-stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule-based machines.
The spin injection and transport properties of low-molecular-weight organic semiconductors such as pentacene and bis(l,2,5-thiadiazolo)-p-quinobis(l,3-dithiole) (BTQBT) were investigated utilizing planar-type spin-valve devices with half-metallic La0.67Sr0.33MnO3 electrodes. The devices showed clear spin-valve characteristics with a magnetoresistance (MR) ratio of up to 29% at 5K. The MR ratio was found to depend on the gap spacing of the electrodes, the applied bias voltage, temperature, and the crystallinity of the films. It was also affected by gas adsorption onto the films, indicating that the spins were scattered by carriers and/or radical ions in the films generated through charge transfer from gas molecules.
Building a bottom‐up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio‐temporal patterns with dissipative structures. However, it remains difficult to build such self‐organized working objects via artificial techniques. Herein, we show the first example of a square‐wave limit‐cycle self‐oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue‐light irradiation. Mechanical self‐oscillation is established by successively alternating photoisomerization processes and multi‐stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule‐based machines.
The nonequilibrium organization of self-assemblies from small building-block molecules offers an attractive and essential means to develop advanced functional materials and to understand the intrinsic nature of life systems. Fatty acids are well-known amphiphiles that form self-assemblies of several shapes. Here, we found that the lengths of helical structures of oleic acid formed in a buffered aqueous solution are dramatically different by the presence or absence of certain amphiphilic carboxylic acids. For example, under the coexistence of a small amount of N-decanoyl-L-alanine, we observed the formation of over 1-centimeter-long helical assemblies of oleate with a regular pitch and radius, whereas mainly less than 100 µm-long helices formed without this additive.Such long helical assemblies are unique in terms of their highly dimensional helical structure and growth dynamics. Results from the real-time observation of self-assembly formation, site-selective small-angle X-ray scattering, high-performance liquid chromatography analysis, and pH titration experiments suggested that the coexisting carboxylates assist in elongation by supplying oleate molecules to a scaffold for oleate helical assembly.
For creation of autonomous microrobots, which are able to move under conditions of a constant environment and a constant energy supply, a mechanism for maintenance of mechanical motion with a capacity for self‐control is required. This requirement, known as self‐organisation, represents the ability of a system to evade equilibrium through formation of a spatio‐temporal pattern. Following our previous finding of a self‐oscillatory flipping motion of an azobenzene‐containing co‐crystal, we present here regulation of the flipping motion by a light‐receiving sensor molecule in relation to the alignment and role of azobenzene molecules in crystals. In the anisotropic structure, a specific azobenzene molecule acts as a reaction centre for the conversion of light to a mechanical function process, whereas the other molecules act as modulators for spatio‐pattern regulation. The present results demonstrate that autonomously drivable molecular materials can exhibit information‐responsive, self‐sustainable motion by incorporating stimulus‐responsive sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.