The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.
The canonical Wnt/β-catenin signaling has remarkably diverse roles in embryonic development, stem cell self-renewal and cancer progression. Here, we show that stabilized expression of β-catenin perturbed human embryonic stem (hES)-cell self-renewal, such that up to 80% of the hES cells developed into the primitive streak (PS)/mesoderm progenitors, reminiscent of early mammalian embryogenesis. The formation of the PS/mesoderm progenitors essentially depended on the cooperative action of β-catenin together with Activin/Nodal and BMP signaling pathways. Intriguingly, blockade of BMP signaling completely abolished mesoderm generation, and induced a cell fate change towards the anterior PS progenitors. The PI3-kinase/Akt, but not MAPK, signaling pathway had a crucial role in the anterior PS specification, at least in part, by enhancing β-catenin stability. In addition, Activin/Nodal and Wnt/β-catenin signaling synergistically induced the generation and specification of the anterior PS/endoderm. Taken together, our findings clearly demonstrate that the orchestrated balance of Activin/Nodal and BMP signaling defines the cell fate of the nascent PS induced by canonical Wnt/β-catenin signaling in hES cells.KEY WORDS: Primitive streak, Mesoderm, Endoderm, Stem cells, β-Catenin, Wnt Development 135, 2969Development 135, -2979Development 135, (2008 Lindsley et al., 2006), but precise roles of this signaling in human ES (hES) cells remains controversial (Dravid et al., 2005;Sato et al., 2004).We report here that the activation of canonical Wnt/β-catenin signaling in hES cells by conditional activation of stabilized β-catenin disrupted hES-cell self-renewal. Rather, the canonical Wnt/β-catenin and BMP signaling pathway in hES cells has significant roles in establishing the posterior PS/mesoderm progenitors, whereas attenuation of BMP signaling changes the cell fate to the anterior PS/endoderm progenitors. In addition, Activin and Wnt/β-catenin signaling pathways synergistically function in inducing undifferentiated hES cells to differentiate into the anterior PS/endoderm progenitors. This is the first in vitro model system that consistently recapitulates the human early embryogenesis and that enables us to analyze molecular events during the process of early embryogenesis from the epiblast to the PS formation, followed by lineage specification into the mesoderm and endoderm. More importantly, our findings will also be relevant to directed differentiation of specific tissue and cells from hES cells. MATERIALS AND METHODS Activation of β-catenin signaling in hES cellsThe ⌬Nβ-cateninER construct, in which the N-terminal 90 amino acids were deleted, was generated by in-frame insertion into the expression vector containing the hormone-binding domain of a mutant estrogen receptor (Littlewood et al., 1995;Sumi et al., 2007). Cell lines expressing ΔNβ-cateninER were obtained by transfection of hES cell lines KhES-1 and KhES-3 with ΔNβ-cateninER expression plasmids, followed by puromysin selection as described previously (Sumi ...
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-⌬3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.
In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.
Epiblast stem cells (EpiSCs) are primed pluripotent stem cells and can be derived from postimplantation mouse embryos. We now show that the absence of canonical Wnt/β-catenin signaling is essential for maintenance of the undifferentiated state in mouse EpiSCs and in the epiblast of mouse embryos. Attenuation of Wnt signaling with the small-molecule inhibitor XAV939 or deletion of the β-catenin gene blocked spontaneous differentiation of EpiSCs toward mesoderm and enhanced the expression of pluripotency factor genes, allowing propagation of EpiSCs as a homogeneous population. EpiSCs were efficiently established and propagated from single epiblast cells in the presence of both XAV939 and the Rho kinase (ROCK) inhibitor Y27632. Cell transplantation revealed that EpiSCs were able to contribute to primordial germ cells and descendants of all three germ layers in a host embryo, suggesting that they maintained pluripotency, even after prolonged culture with XAV939. Such an improvement in the homogeneity of pluripotency achieved with the use of a Wnt inhibitor should prove advantageous for manipulation of primed pluripotent stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.